/* * IDEA * (C) 1999-2010,2015 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include #include namespace Botan { namespace { /* * Multiplication modulo 65537 */ inline u16bit mul(u16bit x, u16bit y) { const u32bit P = static_cast(x) * y; const u16bit Z_mask = static_cast(CT::expand_mask(P) & 0xFFFF); const u32bit P_hi = P >> 16; const u32bit P_lo = P & 0xFFFF; const u16bit r_1 = (P_lo - P_hi) + (P_lo < P_hi); const u16bit r_2 = 1 - x - y; return CT::select(Z_mask, r_1, r_2); } /* * Find multiplicative inverses modulo 65537 * * 65537 is prime; thus Fermat's little theorem tells us that * x^65537 == x modulo 65537, which means * x^(65537-2) == x^-1 modulo 65537 since * x^(65537-2) * x == 1 mod 65537 * * Do the exponentiation with a basic square and multiply: all bits are * of exponent are 1 so we always multiply */ u16bit mul_inv(u16bit x) { u16bit y = x; for(size_t i = 0; i != 15; ++i) { y = mul(y, y); // square y = mul(y, x); } return y; } /** * IDEA is involutional, depending only on the key schedule */ void idea_op(const byte in[], byte out[], size_t blocks, const u16bit K[52]) { const size_t BLOCK_SIZE = 8; CT::poison(in, blocks * 8); CT::poison(out, blocks * 8); CT::poison(K, 52); for(size_t i = 0; i != blocks; ++i) { u16bit X1 = load_be(in + BLOCK_SIZE*i, 0); u16bit X2 = load_be(in + BLOCK_SIZE*i, 1); u16bit X3 = load_be(in + BLOCK_SIZE*i, 2); u16bit X4 = load_be(in + BLOCK_SIZE*i, 3); for(size_t j = 0; j != 8; ++j) { X1 = mul(X1, K[6*j+0]); X2 += K[6*j+1]; X3 += K[6*j+2]; X4 = mul(X4, K[6*j+3]); u16bit T0 = X3; X3 = mul(X3 ^ X1, K[6*j+4]); u16bit T1 = X2; X2 = mul((X2 ^ X4) + X3, K[6*j+5]); X3 += X2; X1 ^= X2; X4 ^= X3; X2 ^= T0; X3 ^= T1; } X1 = mul(X1, K[48]); X2 += K[50]; X3 += K[49]; X4 = mul(X4, K[51]); store_be(out + BLOCK_SIZE*i, X1, X3, X2, X4); } CT::unpoison(in, blocks * 8); CT::unpoison(out, blocks * 8); CT::unpoison(K, 52); } } std::string IDEA::provider() const { #if defined(BOTAN_HAS_IDEA_SSE2) if(CPUID::has_sse2()) { return "sse2"; } #endif return "base"; } /* * IDEA Encryption */ void IDEA::encrypt_n(const byte in[], byte out[], size_t blocks) const { #if defined(BOTAN_HAS_IDEA_SSE2) if(CPUID::has_sse2()) { while(blocks >= 8) { sse2_idea_op_8(in, out, m_EK.data()); in += 8 * BLOCK_SIZE; out += 8 * BLOCK_SIZE; blocks -= 8; } } #endif idea_op(in, out, blocks, m_EK.data()); } /* * IDEA Decryption */ void IDEA::decrypt_n(const byte in[], byte out[], size_t blocks) const { #if defined(BOTAN_HAS_IDEA_SSE2) if(CPUID::has_sse2()) { while(blocks >= 8) { sse2_idea_op_8(in, out, m_DK.data()); in += 8 * BLOCK_SIZE; out += 8 * BLOCK_SIZE; blocks -= 8; } } #endif idea_op(in, out, blocks, m_DK.data()); } /* * IDEA Key Schedule */ void IDEA::key_schedule(const byte key[], size_t) { m_EK.resize(52); m_DK.resize(52); CT::poison(key, 16); CT::poison(m_EK.data(), 52); CT::poison(m_DK.data(), 52); for(size_t i = 0; i != 8; ++i) m_EK[i] = load_be(key, i); for(size_t i = 1, j = 8, offset = 0; j != 52; i %= 8, ++i, ++j) { m_EK[i+7+offset] = static_cast((m_EK[(i % 8) + offset] << 9) | (m_EK[((i+1) % 8) + offset] >> 7)); offset += (i == 8) ? 8 : 0; } m_DK[51] = mul_inv(m_EK[3]); m_DK[50] = -m_EK[2]; m_DK[49] = -m_EK[1]; m_DK[48] = mul_inv(m_EK[0]); for(size_t i = 1, j = 4, counter = 47; i != 8; ++i, j += 6) { m_DK[counter--] = m_EK[j+1]; m_DK[counter--] = m_EK[j]; m_DK[counter--] = mul_inv(m_EK[j+5]); m_DK[counter--] = -m_EK[j+3]; m_DK[counter--] = -m_EK[j+4]; m_DK[counter--] = mul_inv(m_EK[j+2]); } m_DK[5] = m_EK[47]; m_DK[4] = m_EK[46]; m_DK[3] = mul_inv(m_EK[51]); m_DK[2] = -m_EK[50]; m_DK[1] = -m_EK[49]; m_DK[0] = mul_inv(m_EK[48]); CT::unpoison(key, 16); CT::unpoison(m_EK.data(), 52); CT::unpoison(m_DK.data(), 52); } void IDEA::clear() { zap(m_EK); zap(m_DK); } }