/* * Camellia * (C) 2012 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include namespace Botan { BOTAN_REGISTER_BLOCK_CIPHER_NAMED_NOARGS(Camellia_128, "Camellia-128"); BOTAN_REGISTER_BLOCK_CIPHER_NAMED_NOARGS(Camellia_192, "Camellia-192"); BOTAN_REGISTER_BLOCK_CIPHER_NAMED_NOARGS(Camellia_256, "Camellia-256"); namespace Camellia_F { namespace { /* * We use the slow byte-wise version of F in the first and last rounds * to help protect against timing attacks */ u64bit F_SLOW(u64bit v, u64bit K) { static const byte SBOX[256] = { 0x70, 0x82, 0x2C, 0xEC, 0xB3, 0x27, 0xC0, 0xE5, 0xE4, 0x85, 0x57, 0x35, 0xEA, 0x0C, 0xAE, 0x41, 0x23, 0xEF, 0x6B, 0x93, 0x45, 0x19, 0xA5, 0x21, 0xED, 0x0E, 0x4F, 0x4E, 0x1D, 0x65, 0x92, 0xBD, 0x86, 0xB8, 0xAF, 0x8F, 0x7C, 0xEB, 0x1F, 0xCE, 0x3E, 0x30, 0xDC, 0x5F, 0x5E, 0xC5, 0x0B, 0x1A, 0xA6, 0xE1, 0x39, 0xCA, 0xD5, 0x47, 0x5D, 0x3D, 0xD9, 0x01, 0x5A, 0xD6, 0x51, 0x56, 0x6C, 0x4D, 0x8B, 0x0D, 0x9A, 0x66, 0xFB, 0xCC, 0xB0, 0x2D, 0x74, 0x12, 0x2B, 0x20, 0xF0, 0xB1, 0x84, 0x99, 0xDF, 0x4C, 0xCB, 0xC2, 0x34, 0x7E, 0x76, 0x05, 0x6D, 0xB7, 0xA9, 0x31, 0xD1, 0x17, 0x04, 0xD7, 0x14, 0x58, 0x3A, 0x61, 0xDE, 0x1B, 0x11, 0x1C, 0x32, 0x0F, 0x9C, 0x16, 0x53, 0x18, 0xF2, 0x22, 0xFE, 0x44, 0xCF, 0xB2, 0xC3, 0xB5, 0x7A, 0x91, 0x24, 0x08, 0xE8, 0xA8, 0x60, 0xFC, 0x69, 0x50, 0xAA, 0xD0, 0xA0, 0x7D, 0xA1, 0x89, 0x62, 0x97, 0x54, 0x5B, 0x1E, 0x95, 0xE0, 0xFF, 0x64, 0xD2, 0x10, 0xC4, 0x00, 0x48, 0xA3, 0xF7, 0x75, 0xDB, 0x8A, 0x03, 0xE6, 0xDA, 0x09, 0x3F, 0xDD, 0x94, 0x87, 0x5C, 0x83, 0x02, 0xCD, 0x4A, 0x90, 0x33, 0x73, 0x67, 0xF6, 0xF3, 0x9D, 0x7F, 0xBF, 0xE2, 0x52, 0x9B, 0xD8, 0x26, 0xC8, 0x37, 0xC6, 0x3B, 0x81, 0x96, 0x6F, 0x4B, 0x13, 0xBE, 0x63, 0x2E, 0xE9, 0x79, 0xA7, 0x8C, 0x9F, 0x6E, 0xBC, 0x8E, 0x29, 0xF5, 0xF9, 0xB6, 0x2F, 0xFD, 0xB4, 0x59, 0x78, 0x98, 0x06, 0x6A, 0xE7, 0x46, 0x71, 0xBA, 0xD4, 0x25, 0xAB, 0x42, 0x88, 0xA2, 0x8D, 0xFA, 0x72, 0x07, 0xB9, 0x55, 0xF8, 0xEE, 0xAC, 0x0A, 0x36, 0x49, 0x2A, 0x68, 0x3C, 0x38, 0xF1, 0xA4, 0x40, 0x28, 0xD3, 0x7B, 0xBB, 0xC9, 0x43, 0xC1, 0x15, 0xE3, 0xAD, 0xF4, 0x77, 0xC7, 0x80, 0x9E }; const u64bit x = v ^ K; const byte t1 = SBOX[get_byte(0, x)]; const byte t2 = rotate_left(SBOX[get_byte(1, x)], 1); const byte t3 = rotate_left(SBOX[get_byte(2, x)], 7); const byte t4 = SBOX[rotate_left(get_byte(3, x), 1)]; const byte t5 = rotate_left(SBOX[get_byte(4, x)], 1); const byte t6 = rotate_left(SBOX[get_byte(5, x)], 7); const byte t7 = SBOX[rotate_left(get_byte(6, x), 1)]; const byte t8 = SBOX[get_byte(7, x)]; const byte y1 = t1 ^ t3 ^ t4 ^ t6 ^ t7 ^ t8; const byte y2 = t1 ^ t2 ^ t4 ^ t5 ^ t7 ^ t8; const byte y3 = t1 ^ t2 ^ t3 ^ t5 ^ t6 ^ t8; const byte y4 = t2 ^ t3 ^ t4 ^ t5 ^ t6 ^ t7; const byte y5 = t1 ^ t2 ^ t6 ^ t7 ^ t8; const byte y6 = t2 ^ t3 ^ t5 ^ t7 ^ t8; const byte y7 = t3 ^ t4 ^ t5 ^ t6 ^ t8; const byte y8 = t1 ^ t4 ^ t5 ^ t6 ^ t7; return make_u64bit(y1, y2, y3, y4, y5, y6, y7, y8); } inline u64bit F(u64bit v, u64bit K) { const u64bit x = v ^ K; return Camellia_SBOX1[get_byte(0, x)] ^ Camellia_SBOX2[get_byte(1, x)] ^ Camellia_SBOX3[get_byte(2, x)] ^ Camellia_SBOX4[get_byte(3, x)] ^ Camellia_SBOX5[get_byte(4, x)] ^ Camellia_SBOX6[get_byte(5, x)] ^ Camellia_SBOX7[get_byte(6, x)] ^ Camellia_SBOX8[get_byte(7, x)]; } inline u64bit FL(u64bit v, u64bit K) { u32bit x1 = (v >> 32); u32bit x2 = (v & 0xFFFFFFFF); const u32bit k1 = (K >> 32); const u32bit k2 = (K & 0xFFFFFFFF); x2 ^= rotate_left(x1 & k1, 1); x1 ^= (x2 | k2); return ((static_cast(x1) << 32) | x2); } inline u64bit FLINV(u64bit v, u64bit K) { u32bit x1 = (v >> 32); u32bit x2 = (v & 0xFFFFFFFF); const u32bit k1 = (K >> 32); const u32bit k2 = (K & 0xFFFFFFFF); x1 ^= (x2 | k2); x2 ^= rotate_left(x1 & k1, 1); return ((static_cast(x1) << 32) | x2); } /* * Camellia Encryption */ void encrypt(const byte in[], byte out[], size_t blocks, const secure_vector& SK, const size_t rounds) { for(size_t i = 0; i != blocks; ++i) { u64bit D1 = load_be(in, 0); u64bit D2 = load_be(in, 1); const u64bit* K = SK.data(); D1 ^= *K++; D2 ^= *K++; D2 ^= F_SLOW(D1, *K++); D1 ^= F_SLOW(D2, *K++); for(size_t r = 1; r != rounds - 1; ++r) { if(r % 3 == 0) { D1 = FL (D1, *K++); D2 = FLINV(D2, *K++); } D2 ^= F(D1, *K++); D1 ^= F(D2, *K++); } D2 ^= F_SLOW(D1, *K++); D1 ^= F_SLOW(D2, *K++); D2 ^= *K++; D1 ^= *K++; store_be(out, D2, D1); in += 16; out += 16; } } /* * Camellia Decryption */ void decrypt(const byte in[], byte out[], size_t blocks, const secure_vector& SK, const size_t rounds) { for(size_t i = 0; i != blocks; ++i) { u64bit D1 = load_be(in, 0); u64bit D2 = load_be(in, 1); const u64bit* K = &SK[SK.size()-1]; D2 ^= *K--; D1 ^= *K--; D2 ^= F_SLOW(D1, *K--); D1 ^= F_SLOW(D2, *K--); for(size_t r = 1; r != rounds - 1; ++r) { if(r % 3 == 0) { D1 = FL (D1, *K--); D2 = FLINV(D2, *K--); } D2 ^= F(D1, *K--); D1 ^= F(D2, *K--); } D2 ^= F_SLOW(D1, *K--); D1 ^= F_SLOW(D2, *K--); D1 ^= *K--; D2 ^= *K; store_be(out, D2, D1); in += 16; out += 16; } } u64bit left_rot_hi(u64bit h, u64bit l, size_t shift) { return (h << shift) | ((l >> (64-shift))); } u64bit left_rot_lo(u64bit h, u64bit l, size_t shift) { return (h >> (64-shift)) | (l << shift); } /* * Camellia Key Schedule */ void key_schedule(secure_vector& SK, const byte key[], size_t length) { const u64bit Sigma1 = 0xA09E667F3BCC908B; const u64bit Sigma2 = 0xB67AE8584CAA73B2; const u64bit Sigma3 = 0xC6EF372FE94F82BE; const u64bit Sigma4 = 0x54FF53A5F1D36F1C; const u64bit Sigma5 = 0x10E527FADE682D1D; const u64bit Sigma6 = 0xB05688C2B3E6C1FD; const u64bit KL_H = load_be(key, 0); const u64bit KL_L = load_be(key, 1); const u64bit KR_H = (length >= 24) ? load_be(key, 2) : 0; const u64bit KR_L = (length == 32) ? load_be(key, 3) : ((length == 24) ? ~KR_H : 0); u64bit D1 = KL_H ^ KR_H; u64bit D2 = KL_L ^ KR_L; D2 ^= F(D1, Sigma1); D1 ^= F(D2, Sigma2); D1 ^= KL_H; D2 ^= KL_L; D2 ^= F(D1, Sigma3); D1 ^= F(D2, Sigma4); const u64bit KA_H = D1; const u64bit KA_L = D2; D1 = KA_H ^ KR_H; D2 = KA_L ^ KR_L; D2 ^= F(D1, Sigma5); D1 ^= F(D2, Sigma6); const u64bit KB_H = D1; const u64bit KB_L = D2; if(length == 16) { SK.resize(26); SK[ 0] = KL_H; SK[ 1] = KL_L; SK[ 2] = KA_H; SK[ 3] = KA_L; SK[ 4] = left_rot_hi(KL_H, KL_L, 15); SK[ 5] = left_rot_lo(KL_H, KL_L, 15); SK[ 6] = left_rot_hi(KA_H, KA_L, 15); SK[ 7] = left_rot_lo(KA_H, KA_L, 15); SK[ 8] = left_rot_hi(KA_H, KA_L, 30); SK[ 9] = left_rot_lo(KA_H, KA_L, 30); SK[10] = left_rot_hi(KL_H, KL_L, 45); SK[11] = left_rot_lo(KL_H, KL_L, 45); SK[12] = left_rot_hi(KA_H, KA_L, 45); SK[13] = left_rot_lo(KL_H, KL_L, 60); SK[14] = left_rot_hi(KA_H, KA_L, 60); SK[15] = left_rot_lo(KA_H, KA_L, 60); SK[16] = left_rot_lo(KL_H, KL_L, 77-64); SK[17] = left_rot_hi(KL_H, KL_L, 77-64); SK[18] = left_rot_lo(KL_H, KL_L, 94-64); SK[19] = left_rot_hi(KL_H, KL_L, 94-64); SK[20] = left_rot_lo(KA_H, KA_L, 94-64); SK[21] = left_rot_hi(KA_H, KA_L, 94-64); SK[22] = left_rot_lo(KL_H, KL_L, 111-64); SK[23] = left_rot_hi(KL_H, KL_L, 111-64); SK[24] = left_rot_lo(KA_H, KA_L, 111-64); SK[25] = left_rot_hi(KA_H, KA_L, 111-64); } else { SK.resize(34); SK[ 0] = KL_H; SK[ 1] = KL_L; SK[ 2] = KB_H; SK[ 3] = KB_L; SK[ 4] = left_rot_hi(KR_H, KR_L, 15); SK[ 5] = left_rot_lo(KR_H, KR_L, 15); SK[ 6] = left_rot_hi(KA_H, KA_L, 15); SK[ 7] = left_rot_lo(KA_H, KA_L, 15); SK[ 8] = left_rot_hi(KR_H, KR_L, 30); SK[ 9] = left_rot_lo(KR_H, KR_L, 30); SK[10] = left_rot_hi(KB_H, KB_L, 30); SK[11] = left_rot_lo(KB_H, KB_L, 30); SK[12] = left_rot_hi(KL_H, KL_L, 45); SK[13] = left_rot_lo(KL_H, KL_L, 45); SK[14] = left_rot_hi(KA_H, KA_L, 45); SK[15] = left_rot_lo(KA_H, KA_L, 45); SK[16] = left_rot_hi(KL_H, KL_L, 60); SK[17] = left_rot_lo(KL_H, KL_L, 60); SK[18] = left_rot_hi(KR_H, KR_L, 60); SK[19] = left_rot_lo(KR_H, KR_L, 60); SK[20] = left_rot_hi(KB_H, KB_L, 60); SK[21] = left_rot_lo(KB_H, KB_L, 60); SK[22] = left_rot_lo(KL_H, KL_L, 77-64); SK[23] = left_rot_hi(KL_H, KL_L, 77-64); SK[24] = left_rot_lo(KA_H, KA_L, 77-64); SK[25] = left_rot_hi(KA_H, KA_L, 77-64); SK[26] = left_rot_lo(KR_H, KR_L, 94-64); SK[27] = left_rot_hi(KR_H, KR_L, 94-64); SK[28] = left_rot_lo(KA_H, KA_L, 94-64); SK[29] = left_rot_hi(KA_H, KA_L, 94-64); SK[30] = left_rot_lo(KL_H, KL_L, 111-64); SK[31] = left_rot_hi(KL_H, KL_L, 111-64); SK[32] = left_rot_lo(KB_H, KB_L, 111-64); SK[33] = left_rot_hi(KB_H, KB_L, 111-64); } } } } void Camellia_128::encrypt_n(const byte in[], byte out[], size_t blocks) const { Camellia_F::encrypt(in, out, blocks, SK, 9); } void Camellia_192::encrypt_n(const byte in[], byte out[], size_t blocks) const { Camellia_F::encrypt(in, out, blocks, SK, 12); } void Camellia_256::encrypt_n(const byte in[], byte out[], size_t blocks) const { Camellia_F::encrypt(in, out, blocks, SK, 12); } void Camellia_128::decrypt_n(const byte in[], byte out[], size_t blocks) const { Camellia_F::decrypt(in, out, blocks, SK, 9); } void Camellia_192::decrypt_n(const byte in[], byte out[], size_t blocks) const { Camellia_F::decrypt(in, out, blocks, SK, 12); } void Camellia_256::decrypt_n(const byte in[], byte out[], size_t blocks) const { Camellia_F::decrypt(in, out, blocks, SK, 12); } void Camellia_128::key_schedule(const byte key[], size_t length) { Camellia_F::key_schedule(SK, key, length); } void Camellia_192::key_schedule(const byte key[], size_t length) { Camellia_F::key_schedule(SK, key, length); } void Camellia_256::key_schedule(const byte key[], size_t length) { Camellia_F::key_schedule(SK, key, length); } void Camellia_128::clear() { zap(SK); } void Camellia_192::clear() { zap(SK); } void Camellia_256::clear() { zap(SK); } }