/************************************************* * DES Source File * * (C) 1999-2007 The Botan Project * *************************************************/ #include #include namespace Botan { /************************************************* * DES Encryption * *************************************************/ void DES::enc(const byte in[], byte out[]) const { u32bit L = load_be(in, 0), R = load_be(in, 1); IP(L, R); raw_encrypt(L, R); FP(L, R); store_be(out, R, L); } /************************************************* * DES Decryption * *************************************************/ void DES::dec(const byte in[], byte out[]) const { u32bit L = load_be(in, 0), R = load_be(in, 1); IP(L, R); raw_decrypt(L, R); FP(L, R); store_be(out, R, L); } /************************************************* * DES Initial Permutation * *************************************************/ void DES::IP(u32bit& L, u32bit& R) { u64bit T = (IPTAB1[get_byte(0, L)] ) | (IPTAB1[get_byte(1, L)] << 1) | (IPTAB1[get_byte(2, L)] << 2) | (IPTAB1[get_byte(3, L)] << 3) | (IPTAB1[get_byte(0, R)] << 4) | (IPTAB1[get_byte(1, R)] << 5) | (IPTAB1[get_byte(2, R)] << 6) | (IPTAB2[get_byte(3, R)] ); L = (u32bit)((T >> 32) & 0xFFFFFFFF); R = (u32bit)((T ) & 0xFFFFFFFF); } /************************************************* * DES Final Permutation * *************************************************/ void DES::FP(u32bit& L, u32bit& R) { u64bit T = (FPTAB1[get_byte(0, L)] << 5) | (FPTAB1[get_byte(1, L)] << 3) | (FPTAB1[get_byte(2, L)] << 1) | (FPTAB2[get_byte(3, L)] << 1) | (FPTAB1[get_byte(0, R)] << 4) | (FPTAB1[get_byte(1, R)] << 2) | (FPTAB1[get_byte(2, R)] ) | (FPTAB2[get_byte(3, R)] ); L = (u32bit)((T >> 32) & 0xFFFFFFFF); R = (u32bit)((T ) & 0xFFFFFFFF); } /************************************************* * DES Raw Encryption * *************************************************/ void DES::raw_encrypt(u32bit& L, u32bit& R) const { for(u32bit j = 0; j != 16; j += 2) { u32bit T0, T1; T0 = rotate_right(R, 4) ^ round_key[2*j]; T1 = R ^ round_key[2*j + 1]; L ^= SPBOX1[get_byte(0, T0)] ^ SPBOX2[get_byte(0, T1)] ^ SPBOX3[get_byte(1, T0)] ^ SPBOX4[get_byte(1, T1)] ^ SPBOX5[get_byte(2, T0)] ^ SPBOX6[get_byte(2, T1)] ^ SPBOX7[get_byte(3, T0)] ^ SPBOX8[get_byte(3, T1)]; T0 = rotate_right(L, 4) ^ round_key[2*j + 2]; T1 = L ^ round_key[2*j + 3]; R ^= SPBOX1[get_byte(0, T0)] ^ SPBOX2[get_byte(0, T1)] ^ SPBOX3[get_byte(1, T0)] ^ SPBOX4[get_byte(1, T1)] ^ SPBOX5[get_byte(2, T0)] ^ SPBOX6[get_byte(2, T1)] ^ SPBOX7[get_byte(3, T0)] ^ SPBOX8[get_byte(3, T1)]; } } /************************************************* * DES Raw Decryption * *************************************************/ void DES::raw_decrypt(u32bit& L, u32bit& R) const { for(u32bit j = 16; j != 0; j -= 2) { u32bit T0, T1; T0 = rotate_right(R, 4) ^ round_key[2*j - 2]; T1 = R ^ round_key[2*j - 1]; L ^= SPBOX1[get_byte(0, T0)] ^ SPBOX2[get_byte(0, T1)] ^ SPBOX3[get_byte(1, T0)] ^ SPBOX4[get_byte(1, T1)] ^ SPBOX5[get_byte(2, T0)] ^ SPBOX6[get_byte(2, T1)] ^ SPBOX7[get_byte(3, T0)] ^ SPBOX8[get_byte(3, T1)]; T0 = rotate_right(L, 4) ^ round_key[2*j - 4]; T1 = L ^ round_key[2*j - 3]; R ^= SPBOX1[get_byte(0, T0)] ^ SPBOX2[get_byte(0, T1)] ^ SPBOX3[get_byte(1, T0)] ^ SPBOX4[get_byte(1, T1)] ^ SPBOX5[get_byte(2, T0)] ^ SPBOX6[get_byte(2, T1)] ^ SPBOX7[get_byte(3, T0)] ^ SPBOX8[get_byte(3, T1)]; } } /************************************************* * DES Key Schedule * *************************************************/ void DES::key(const byte key[], u32bit) { static const byte ROT[16] = { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 }; u32bit C = ((key[7] & 0x80) << 20) | ((key[6] & 0x80) << 19) | ((key[5] & 0x80) << 18) | ((key[4] & 0x80) << 17) | ((key[3] & 0x80) << 16) | ((key[2] & 0x80) << 15) | ((key[1] & 0x80) << 14) | ((key[0] & 0x80) << 13) | ((key[7] & 0x40) << 13) | ((key[6] & 0x40) << 12) | ((key[5] & 0x40) << 11) | ((key[4] & 0x40) << 10) | ((key[3] & 0x40) << 9) | ((key[2] & 0x40) << 8) | ((key[1] & 0x40) << 7) | ((key[0] & 0x40) << 6) | ((key[7] & 0x20) << 6) | ((key[6] & 0x20) << 5) | ((key[5] & 0x20) << 4) | ((key[4] & 0x20) << 3) | ((key[3] & 0x20) << 2) | ((key[2] & 0x20) << 1) | ((key[1] & 0x20) ) | ((key[0] & 0x20) >> 1) | ((key[7] & 0x10) >> 1) | ((key[6] & 0x10) >> 2) | ((key[5] & 0x10) >> 3) | ((key[4] & 0x10) >> 4); u32bit D = ((key[7] & 0x02) << 26) | ((key[6] & 0x02) << 25) | ((key[5] & 0x02) << 24) | ((key[4] & 0x02) << 23) | ((key[3] & 0x02) << 22) | ((key[2] & 0x02) << 21) | ((key[1] & 0x02) << 20) | ((key[0] & 0x02) << 19) | ((key[7] & 0x04) << 17) | ((key[6] & 0x04) << 16) | ((key[5] & 0x04) << 15) | ((key[4] & 0x04) << 14) | ((key[3] & 0x04) << 13) | ((key[2] & 0x04) << 12) | ((key[1] & 0x04) << 11) | ((key[0] & 0x04) << 10) | ((key[7] & 0x08) << 8) | ((key[6] & 0x08) << 7) | ((key[5] & 0x08) << 6) | ((key[4] & 0x08) << 5) | ((key[3] & 0x08) << 4) | ((key[2] & 0x08) << 3) | ((key[1] & 0x08) << 2) | ((key[0] & 0x08) << 1) | ((key[3] & 0x10) >> 1) | ((key[2] & 0x10) >> 2) | ((key[1] & 0x10) >> 3) | ((key[0] & 0x10) >> 4); for(u32bit j = 0; j != 16; ++j) { C = ((C << ROT[j]) | (C >> (28-ROT[j]))) & 0x0FFFFFFF; D = ((D << ROT[j]) | (D >> (28-ROT[j]))) & 0x0FFFFFFF; round_key[2*j ] = ((C & 0x00000010) << 22) | ((C & 0x00000800) << 17) | ((C & 0x00000020) << 16) | ((C & 0x00004004) << 15) | ((C & 0x00000200) << 11) | ((C & 0x00020000) << 10) | ((C & 0x01000000) >> 6) | ((C & 0x00100000) >> 4) | ((C & 0x00010000) << 3) | ((C & 0x08000000) >> 2) | ((C & 0x00800000) << 1) | ((D & 0x00000010) << 8) | ((D & 0x00000002) << 7) | ((D & 0x00000001) << 2) | ((D & 0x00000200) ) | ((D & 0x00008000) >> 2) | ((D & 0x00000088) >> 3) | ((D & 0x00001000) >> 7) | ((D & 0x00080000) >> 9) | ((D & 0x02020000) >> 14) | ((D & 0x00400000) >> 21); round_key[2*j+1] = ((C & 0x00000001) << 28) | ((C & 0x00000082) << 18) | ((C & 0x00002000) << 14) | ((C & 0x00000100) << 10) | ((C & 0x00001000) << 9) | ((C & 0x00040000) << 6) | ((C & 0x02400000) << 4) | ((C & 0x00008000) << 2) | ((C & 0x00200000) >> 1) | ((C & 0x04000000) >> 10) | ((D & 0x00000020) << 6) | ((D & 0x00000100) ) | ((D & 0x00000800) >> 1) | ((D & 0x00000040) >> 3) | ((D & 0x00010000) >> 4) | ((D & 0x00000400) >> 5) | ((D & 0x00004000) >> 10) | ((D & 0x04000000) >> 13) | ((D & 0x00800000) >> 14) | ((D & 0x00100000) >> 18) | ((D & 0x01000000) >> 24) | ((D & 0x08000000) >> 26); } } /************************************************* * TripleDES Encryption * *************************************************/ void TripleDES::enc(const byte in[], byte out[]) const { u32bit L = load_be(in, 0), R = load_be(in, 1); DES::IP(L, R); des1.raw_encrypt(L, R); des2.raw_decrypt(R, L); des3.raw_encrypt(L, R); DES::FP(L, R); store_be(out, R, L); } /************************************************* * TripleDES Decryption * *************************************************/ void TripleDES::dec(const byte in[], byte out[]) const { u32bit L = load_be(in, 0), R = load_be(in, 1); DES::IP(L, R); des3.raw_decrypt(L, R); des2.raw_encrypt(R, L); des1.raw_decrypt(L, R); DES::FP(L, R); store_be(out, R, L); } /************************************************* * TripleDES Key Schedule * *************************************************/ void TripleDES::key(const byte key[], u32bit length) { des1.set_key(key, 8); des2.set_key(key + 8, 8); if(length == 24) des3.set_key(key + 16, 8); else des3.set_key(key, 8); } /************************************************* * DESX Encryption * *************************************************/ void DESX::enc(const byte in[], byte out[]) const { xor_buf(out, in, K1.begin(), BLOCK_SIZE); des.encrypt(out); xor_buf(out, K2.begin(), BLOCK_SIZE); } /************************************************* * DESX Decryption * *************************************************/ void DESX::dec(const byte in[], byte out[]) const { xor_buf(out, in, K2.begin(), BLOCK_SIZE); des.decrypt(out); xor_buf(out, K1.begin(), BLOCK_SIZE); } /************************************************* * DESX Key Schedule * *************************************************/ void DESX::key(const byte key[], u32bit) { K1.copy(key, 8); des.set_key(key + 8, 8); K2.copy(key + 16, 8); } }