/************************************************* * Default Engine PK Operations Source File * * (C) 1999-2007 The Botan Project * *************************************************/ #include #include #include #include namespace Botan { namespace { /************************************************* * Default IF Operation * *************************************************/ class Default_IF_Op : public IF_Operation { public: BigInt public_op(const BigInt& i) const { return powermod_e_n(i); } BigInt private_op(const BigInt&) const; IF_Operation* clone() const { return new Default_IF_Op(*this); } Default_IF_Op(const BigInt&, const BigInt&, const BigInt&, const BigInt&, const BigInt&, const BigInt&, const BigInt&, const BigInt&); private: Fixed_Exponent_Power_Mod powermod_e_n, powermod_d1_p, powermod_d2_q; Modular_Reducer reducer; BigInt c, q; }; /************************************************* * Default_IF_Op Constructor * *************************************************/ Default_IF_Op::Default_IF_Op(const BigInt& e, const BigInt& n, const BigInt&, const BigInt& p, const BigInt& q, const BigInt& d1, const BigInt& d2, const BigInt& c) { powermod_e_n = Fixed_Exponent_Power_Mod(e, n); if(d1 != 0 && d2 != 0 && p != 0 && q != 0) { powermod_d1_p = Fixed_Exponent_Power_Mod(d1, p); powermod_d2_q = Fixed_Exponent_Power_Mod(d2, q); reducer = Modular_Reducer(p); this->c = c; this->q = q; } } /************************************************* * Default IF Private Operation * *************************************************/ BigInt Default_IF_Op::private_op(const BigInt& i) const { if(q == 0) throw Internal_Error("Default_IF_Op::private_op: No private key"); BigInt j1 = powermod_d1_p(i); BigInt j2 = powermod_d2_q(i); j1 = reducer.reduce(sub_mul(j1, j2, c)); return mul_add(j1, q, j2); } /************************************************* * Default DSA Operation * *************************************************/ class Default_DSA_Op : public DSA_Operation { public: bool verify(const byte[], u32bit, const byte[], u32bit) const; SecureVector sign(const byte[], u32bit, const BigInt&) const; DSA_Operation* clone() const { return new Default_DSA_Op(*this); } Default_DSA_Op(const DL_Group&, const BigInt&, const BigInt&); private: const BigInt x, y; const DL_Group group; Fixed_Base_Power_Mod powermod_g_p, powermod_y_p; Modular_Reducer mod_p, mod_q; }; /************************************************* * Default_DSA_Op Constructor * *************************************************/ Default_DSA_Op::Default_DSA_Op(const DL_Group& grp, const BigInt& y1, const BigInt& x1) : x(x1), y(y1), group(grp) { powermod_g_p = Fixed_Base_Power_Mod(group.get_g(), group.get_p()); powermod_y_p = Fixed_Base_Power_Mod(y, group.get_p()); mod_p = Modular_Reducer(group.get_p()); mod_q = Modular_Reducer(group.get_q()); } /************************************************* * Default DSA Verify Operation * *************************************************/ bool Default_DSA_Op::verify(const byte msg[], u32bit msg_len, const byte sig[], u32bit sig_len) const { const BigInt& q = group.get_q(); if(sig_len != 2*q.bytes() || msg_len > q.bytes()) return false; BigInt r(sig, q.bytes()); BigInt s(sig + q.bytes(), q.bytes()); BigInt i(msg, msg_len); if(r <= 0 || r >= q || s <= 0 || s >= q) return false; s = inverse_mod(s, q); s = mod_p.multiply(powermod_g_p(mod_q.multiply(s, i)), powermod_y_p(mod_q.multiply(s, r))); return (mod_q.reduce(s) == r); } /************************************************* * Default DSA Sign Operation * *************************************************/ SecureVector Default_DSA_Op::sign(const byte in[], u32bit length, const BigInt& k) const { if(x == 0) throw Internal_Error("Default_DSA_Op::sign: No private key"); const BigInt& q = group.get_q(); BigInt i(in, length); BigInt r = mod_q.reduce(powermod_g_p(k)); BigInt s = mod_q.multiply(inverse_mod(k, q), mul_add(x, r, i)); if(r.is_zero() || s.is_zero()) throw Internal_Error("Default_DSA_Op::sign: r or s was zero"); SecureVector output(2*q.bytes()); r.binary_encode(output + (output.size() / 2 - r.bytes())); s.binary_encode(output + (output.size() - s.bytes())); return output; } /************************************************* * Default NR Operation * *************************************************/ class Default_NR_Op : public NR_Operation { public: SecureVector verify(const byte[], u32bit) const; SecureVector sign(const byte[], u32bit, const BigInt&) const; NR_Operation* clone() const { return new Default_NR_Op(*this); } Default_NR_Op(const DL_Group&, const BigInt&, const BigInt&); private: const BigInt x, y; const DL_Group group; Fixed_Base_Power_Mod powermod_g_p, powermod_y_p; Modular_Reducer mod_p, mod_q; }; /************************************************* * Default_NR_Op Constructor * *************************************************/ Default_NR_Op::Default_NR_Op(const DL_Group& grp, const BigInt& y1, const BigInt& x1) : x(x1), y(y1), group(grp) { powermod_g_p = Fixed_Base_Power_Mod(group.get_g(), group.get_p()); powermod_y_p = Fixed_Base_Power_Mod(y, group.get_p()); mod_p = Modular_Reducer(group.get_p()); mod_q = Modular_Reducer(group.get_q()); } /************************************************* * Default NR Verify Operation * *************************************************/ SecureVector Default_NR_Op::verify(const byte in[], u32bit length) const { const BigInt& q = group.get_q(); if(length != 2*q.bytes()) return false; BigInt c(in, q.bytes()); BigInt d(in + q.bytes(), q.bytes()); if(c.is_zero() || c >= q || d >= q) throw Invalid_Argument("Default_NR_Op::verify: Invalid signature"); BigInt i = mod_p.multiply(powermod_g_p(d), powermod_y_p(c)); return BigInt::encode(mod_q.reduce(c - i)); } /************************************************* * Default NR Sign Operation * *************************************************/ SecureVector Default_NR_Op::sign(const byte in[], u32bit length, const BigInt& k) const { if(x == 0) throw Internal_Error("Default_NR_Op::sign: No private key"); const BigInt& q = group.get_q(); BigInt f(in, length); if(f >= q) throw Invalid_Argument("Default_NR_Op::sign: Input is out of range"); BigInt c = mod_q.reduce(powermod_g_p(k) + f); if(c.is_zero()) throw Internal_Error("Default_NR_Op::sign: c was zero"); BigInt d = mod_q.reduce(k - x * c); SecureVector output(2*q.bytes()); c.binary_encode(output + (output.size() / 2 - c.bytes())); d.binary_encode(output + (output.size() - d.bytes())); return output; } /************************************************* * Default ElGamal Operation * *************************************************/ class Default_ELG_Op : public ELG_Operation { public: SecureVector encrypt(const byte[], u32bit, const BigInt&) const; BigInt decrypt(const BigInt&, const BigInt&) const; ELG_Operation* clone() const { return new Default_ELG_Op(*this); } Default_ELG_Op(const DL_Group&, const BigInt&, const BigInt&); private: const BigInt p; Fixed_Base_Power_Mod powermod_g_p, powermod_y_p; Fixed_Exponent_Power_Mod powermod_x_p; Modular_Reducer mod_p; }; /************************************************* * Default_ELG_Op Constructor * *************************************************/ Default_ELG_Op::Default_ELG_Op(const DL_Group& group, const BigInt& y, const BigInt& x) : p(group.get_p()) { powermod_g_p = Fixed_Base_Power_Mod(group.get_g(), p); powermod_y_p = Fixed_Base_Power_Mod(y, p); mod_p = Modular_Reducer(p); if(x != 0) powermod_x_p = Fixed_Exponent_Power_Mod(x, p); } /************************************************* * Default ElGamal Encrypt Operation * *************************************************/ SecureVector Default_ELG_Op::encrypt(const byte in[], u32bit length, const BigInt& k) const { BigInt m(in, length); if(m >= p) throw Invalid_Argument("Default_ELG_Op::encrypt: Input is too large"); BigInt a = powermod_g_p(k); BigInt b = mod_p.multiply(m, powermod_y_p(k)); SecureVector output(2*p.bytes()); a.binary_encode(output + (p.bytes() - a.bytes())); b.binary_encode(output + output.size() / 2 + (p.bytes() - b.bytes())); return output; } /************************************************* * Default ElGamal Decrypt Operation * *************************************************/ BigInt Default_ELG_Op::decrypt(const BigInt& a, const BigInt& b) const { if(a >= p || b >= p) throw Invalid_Argument("Default_ELG_Op: Invalid message"); return mod_p.multiply(b, inverse_mod(powermod_x_p(a), p)); } /************************************************* * Default DH Operation * *************************************************/ class Default_DH_Op : public DH_Operation { public: BigInt agree(const BigInt& i) const { return powermod_x_p(i); } DH_Operation* clone() const { return new Default_DH_Op(*this); } Default_DH_Op(const DL_Group& group, const BigInt& x) : powermod_x_p(x, group.get_p()) {} private: const Fixed_Exponent_Power_Mod powermod_x_p; }; } /************************************************* * Acquire an IF op * *************************************************/ IF_Operation* Default_Engine::if_op(const BigInt& e, const BigInt& n, const BigInt& d, const BigInt& p, const BigInt& q, const BigInt& d1, const BigInt& d2, const BigInt& c) const { return new Default_IF_Op(e, n, d, p, q, d1, d2, c); } /************************************************* * Acquire a DSA op * *************************************************/ DSA_Operation* Default_Engine::dsa_op(const DL_Group& group, const BigInt& y, const BigInt& x) const { return new Default_DSA_Op(group, y, x); } /************************************************* * Acquire a NR op * *************************************************/ NR_Operation* Default_Engine::nr_op(const DL_Group& group, const BigInt& y, const BigInt& x) const { return new Default_NR_Op(group, y, x); } /************************************************* * Acquire an ElGamal op * *************************************************/ ELG_Operation* Default_Engine::elg_op(const DL_Group& group, const BigInt& y, const BigInt& x) const { return new Default_ELG_Op(group, y, x); } /************************************************* * Acquire a DH op * *************************************************/ DH_Operation* Default_Engine::dh_op(const DL_Group& group, const BigInt& x) const { return new Default_DH_Op(group, x); } }