/* * (C) 2009,2010,2015 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include "cli.h" #if defined(BOTAN_HAS_NUMBERTHEORY) #include #include #include namespace Botan_CLI { class Modular_Inverse final : public Command { public: Modular_Inverse() : Command("mod_inverse n mod") {} void go() override { const Botan::BigInt n(get_arg("n")); const Botan::BigInt mod(get_arg("mod")); output() << Botan::inverse_mod(n, mod) << "\n"; } }; BOTAN_REGISTER_COMMAND("mod_inverse", Modular_Inverse); class Gen_Prime final : public Command { public: Gen_Prime() : Command("gen_prime --count=1 bits") {} void go() override { const size_t bits = get_arg_sz("bits"); const size_t cnt = get_arg_sz("count"); for(size_t i = 0; i != cnt; ++i) { const Botan::BigInt p = Botan::random_prime(rng(), bits); output() << p << "\n"; } } }; BOTAN_REGISTER_COMMAND("gen_prime", Gen_Prime); class Is_Prime final : public Command { public: Is_Prime() : Command("is_prime --prob=56 n") {} void go() override { Botan::BigInt n(get_arg("n")); const size_t prob = get_arg_sz("prob"); const bool prime = Botan::is_prime(n, rng(), prob); output() << n << " is " << (prime ? "probably prime" : "composite") << "\n"; } }; BOTAN_REGISTER_COMMAND("is_prime", Is_Prime); /* * Factor integers using a combination of trial division by small * primes, and Pollard's Rho algorithm */ class Factor final : public Command { public: Factor() : Command("factor n") {} void go() override { Botan::BigInt n(get_arg("n")); std::vector factors = factorize(n, rng()); std::sort(factors.begin(), factors.end()); output() << n << ": "; std::copy(factors.begin(), factors.end(), std::ostream_iterator(output(), " ")); output() << std::endl; } private: std::vector factorize(const Botan::BigInt& n_in, Botan::RandomNumberGenerator& rng) { Botan::BigInt n = n_in; std::vector factors = remove_small_factors(n); while(n != 1) { if(Botan::is_prime(n, rng)) { factors.push_back(n); break; } Botan::BigInt a_factor = 0; while(a_factor == 0) { a_factor = rho(n, rng); } std::vector rho_factored = factorize(a_factor, rng); for(size_t j = 0; j != rho_factored.size(); j++) { factors.push_back(rho_factored[j]); } n /= a_factor; } return factors; } /* * Pollard's Rho algorithm, as described in the MIT algorithms book. We * use (x^2+x) mod n instead of (x*2-1) mod n as the random function, * it _seems_ to lead to faster factorization for the values I tried. */ Botan::BigInt rho(const Botan::BigInt& n, Botan::RandomNumberGenerator& rng) { Botan::BigInt x = Botan::BigInt::random_integer(rng, 0, n - 1); Botan::BigInt y = x; Botan::BigInt d = 0; Botan::Modular_Reducer mod_n(n); size_t i = 1, k = 2; while(true) { i++; if(i == 0) // overflow, bail out { break; } x = mod_n.multiply((x + 1), x); d = Botan::gcd(y - x, n); if(d != 1 && d != n) { return d; } if(i == k) { y = x; k = 2 * k; } } return 0; } // Remove (and return) any small (< 2^16) factors std::vector remove_small_factors(Botan::BigInt& n) { std::vector factors; while(n.is_even()) { factors.push_back(2); n /= 2; } for(size_t j = 0; j != Botan::PRIME_TABLE_SIZE; j++) { uint16_t prime = Botan::PRIMES[j]; if(n < prime) { break; } Botan::BigInt x = Botan::gcd(n, prime); if(x != 1) { n /= x; while(x != 1) { x /= prime; factors.push_back(prime); } } } return factors; } }; BOTAN_REGISTER_COMMAND("factor", Factor); } #endif