/* * XTEA * (C) 1999-2009 Jack Lloyd * * Distributed under the terms of the Botan license */ #include #include namespace Botan { namespace { void xtea_encrypt_4(const byte in[32], byte out[32], const u32bit EK[64]) { u32bit L0, R0, L1, R1, L2, R2, L3, R3; load_be(in, L0, R0, L1, R1, L2, R2, L3, R3); for(size_t i = 0; i != 32; ++i) { L0 += (((R0 << 4) ^ (R0 >> 5)) + R0) ^ EK[2*i]; L1 += (((R1 << 4) ^ (R1 >> 5)) + R1) ^ EK[2*i]; L2 += (((R2 << 4) ^ (R2 >> 5)) + R2) ^ EK[2*i]; L3 += (((R3 << 4) ^ (R3 >> 5)) + R3) ^ EK[2*i]; R0 += (((L0 << 4) ^ (L0 >> 5)) + L0) ^ EK[2*i+1]; R1 += (((L1 << 4) ^ (L1 >> 5)) + L1) ^ EK[2*i+1]; R2 += (((L2 << 4) ^ (L2 >> 5)) + L2) ^ EK[2*i+1]; R3 += (((L3 << 4) ^ (L3 >> 5)) + L3) ^ EK[2*i+1]; } store_be(out, L0, R0, L1, R1, L2, R2, L3, R3); } void xtea_decrypt_4(const byte in[32], byte out[32], const u32bit EK[64]) { u32bit L0, R0, L1, R1, L2, R2, L3, R3; load_be(in, L0, R0, L1, R1, L2, R2, L3, R3); for(size_t i = 0; i != 32; ++i) { R0 -= (((L0 << 4) ^ (L0 >> 5)) + L0) ^ EK[63 - 2*i]; R1 -= (((L1 << 4) ^ (L1 >> 5)) + L1) ^ EK[63 - 2*i]; R2 -= (((L2 << 4) ^ (L2 >> 5)) + L2) ^ EK[63 - 2*i]; R3 -= (((L3 << 4) ^ (L3 >> 5)) + L3) ^ EK[63 - 2*i]; L0 -= (((R0 << 4) ^ (R0 >> 5)) + R0) ^ EK[62 - 2*i]; L1 -= (((R1 << 4) ^ (R1 >> 5)) + R1) ^ EK[62 - 2*i]; L2 -= (((R2 << 4) ^ (R2 >> 5)) + R2) ^ EK[62 - 2*i]; L3 -= (((R3 << 4) ^ (R3 >> 5)) + R3) ^ EK[62 - 2*i]; } store_be(out, L0, R0, L1, R1, L2, R2, L3, R3); } } /* * XTEA Encryption */ void XTEA::encrypt_n(const byte in[], byte out[], size_t blocks) const { while(blocks >= 4) { xtea_encrypt_4(in, out, &(this->EK[0])); in += 4 * BLOCK_SIZE; out += 4 * BLOCK_SIZE; blocks -= 4; } for(size_t i = 0; i != blocks; ++i) { u32bit L = load_be(in, 0); u32bit R = load_be(in, 1); for(size_t j = 0; j != 32; ++j) { L += (((R << 4) ^ (R >> 5)) + R) ^ EK[2*j]; R += (((L << 4) ^ (L >> 5)) + L) ^ EK[2*j+1]; } store_be(out, L, R); in += BLOCK_SIZE; out += BLOCK_SIZE; } } /* * XTEA Decryption */ void XTEA::decrypt_n(const byte in[], byte out[], size_t blocks) const { while(blocks >= 4) { xtea_decrypt_4(in, out, &(this->EK[0])); in += 4 * BLOCK_SIZE; out += 4 * BLOCK_SIZE; blocks -= 4; } for(size_t i = 0; i != blocks; ++i) { u32bit L = load_be(in, 0); u32bit R = load_be(in, 1); for(size_t j = 0; j != 32; ++j) { R -= (((L << 4) ^ (L >> 5)) + L) ^ EK[63 - 2*j]; L -= (((R << 4) ^ (R >> 5)) + R) ^ EK[62 - 2*j]; } store_be(out, L, R); in += BLOCK_SIZE; out += BLOCK_SIZE; } } /* * XTEA Key Schedule */ void XTEA::key_schedule(const byte key[], size_t) { EK.resize(64); secure_vector UK(4); for(size_t i = 0; i != 4; ++i) UK[i] = load_be(key, i); u32bit D = 0; for(size_t i = 0; i != 64; i += 2) { EK[i ] = D + UK[D % 4]; D += 0x9E3779B9; EK[i+1] = D + UK[(D >> 11) % 4]; } } }