/* * Skipjack * (C) 1999-2007 Jack Lloyd * * Distributed under the terms of the Botan license */ #include #include namespace Botan { namespace { /* * Skipjack Stepping Rule 'A' */ void step_A(u16bit& W1, u16bit& W4, u32bit round, const byte FTAB[]) { byte G1 = get_byte(0, W1), G2 = get_byte(1, W1), G3; G3 = FTAB[((4*round-4)%10)*256 + G2] ^ G1; G1 = FTAB[((4*round-3)%10)*256 + G3] ^ G2; G2 = FTAB[((4*round-2)%10)*256 + G1] ^ G3; G3 = FTAB[((4*round-1)%10)*256 + G2] ^ G1; W1 = make_u16bit(G2, G3); W4 ^= W1 ^ round; } /* * Skipjack Stepping Rule 'B' */ void step_B(u16bit& W1, u16bit& W2, u32bit round, const byte FTAB[]) { W2 ^= W1 ^ round; byte G1 = get_byte(0, W1), G2 = get_byte(1, W1), G3; G3 = FTAB[((4*round-4)%10)*256 + G2] ^ G1; G1 = FTAB[((4*round-3)%10)*256 + G3] ^ G2; G2 = FTAB[((4*round-2)%10)*256 + G1] ^ G3; G3 = FTAB[((4*round-1)%10)*256 + G2] ^ G1; W1 = make_u16bit(G2, G3); } /* * Skipjack Invserse Stepping Rule 'A' */ void step_Ai(u16bit& W1, u16bit& W2, u32bit round, const byte FTAB[]) { W1 ^= W2 ^ round; byte G1 = get_byte(1, W2), G2 = get_byte(0, W2), G3; G3 = FTAB[((4 * round - 1) % 10)*256 + G2] ^ G1; G1 = FTAB[((4 * round - 2) % 10)*256 + G3] ^ G2; G2 = FTAB[((4 * round - 3) % 10)*256 + G1] ^ G3; G3 = FTAB[((4 * round - 4) % 10)*256 + G2] ^ G1; W2 = make_u16bit(G3, G2); } /* * Skipjack Invserse Stepping Rule 'B' */ void step_Bi(u16bit& W2, u16bit& W3, u32bit round, const byte FTAB[]) { byte G1 = get_byte(1, W2), G2 = get_byte(0, W2), G3; G3 = FTAB[((4 * round - 1) % 10)*256 + G2] ^ G1; G1 = FTAB[((4 * round - 2) % 10)*256 + G3] ^ G2; G2 = FTAB[((4 * round - 3) % 10)*256 + G1] ^ G3; G3 = FTAB[((4 * round - 4) % 10)*256 + G2] ^ G1; W2 = make_u16bit(G3, G2); W3 ^= W2 ^ round; } } /* * Skipjack Encryption */ void Skipjack::encrypt_n(const byte in[], byte out[], u32bit blocks) const { for(u32bit i = 0; i != blocks; ++i) { u16bit W1 = load_le(in, 3); u16bit W2 = load_le(in, 2); u16bit W3 = load_le(in, 1); u16bit W4 = load_le(in, 0); step_A(W1, W4, 1, FTAB); step_A(W4, W3, 2, FTAB); step_A(W3, W2, 3, FTAB); step_A(W2, W1, 4, FTAB); step_A(W1, W4, 5, FTAB); step_A(W4, W3, 6, FTAB); step_A(W3, W2, 7, FTAB); step_A(W2, W1, 8, FTAB); step_B(W1, W2, 9, FTAB); step_B(W4, W1, 10, FTAB); step_B(W3, W4, 11, FTAB); step_B(W2, W3, 12, FTAB); step_B(W1, W2, 13, FTAB); step_B(W4, W1, 14, FTAB); step_B(W3, W4, 15, FTAB); step_B(W2, W3, 16, FTAB); step_A(W1, W4, 17, FTAB); step_A(W4, W3, 18, FTAB); step_A(W3, W2, 19, FTAB); step_A(W2, W1, 20, FTAB); step_A(W1, W4, 21, FTAB); step_A(W4, W3, 22, FTAB); step_A(W3, W2, 23, FTAB); step_A(W2, W1, 24, FTAB); step_B(W1, W2, 25, FTAB); step_B(W4, W1, 26, FTAB); step_B(W3, W4, 27, FTAB); step_B(W2, W3, 28, FTAB); step_B(W1, W2, 29, FTAB); step_B(W4, W1, 30, FTAB); step_B(W3, W4, 31, FTAB); step_B(W2, W3, 32, FTAB); store_le(out, W4, W3, W2, W1); in += BLOCK_SIZE; out += BLOCK_SIZE; } } /* * Skipjack Decryption */ void Skipjack::decrypt_n(const byte in[], byte out[], u32bit blocks) const { for(u32bit i = 0; i != blocks; ++i) { u16bit W1 = load_le(in, 3); u16bit W2 = load_le(in, 2); u16bit W3 = load_le(in, 1); u16bit W4 = load_le(in, 0); step_Bi(W2, W3, 32, FTAB); step_Bi(W3, W4, 31, FTAB); step_Bi(W4, W1, 30, FTAB); step_Bi(W1, W2, 29, FTAB); step_Bi(W2, W3, 28, FTAB); step_Bi(W3, W4, 27, FTAB); step_Bi(W4, W1, 26, FTAB); step_Bi(W1, W2, 25, FTAB); step_Ai(W1, W2, 24, FTAB); step_Ai(W2, W3, 23, FTAB); step_Ai(W3, W4, 22, FTAB); step_Ai(W4, W1, 21, FTAB); step_Ai(W1, W2, 20, FTAB); step_Ai(W2, W3, 19, FTAB); step_Ai(W3, W4, 18, FTAB); step_Ai(W4, W1, 17, FTAB); step_Bi(W2, W3, 16, FTAB); step_Bi(W3, W4, 15, FTAB); step_Bi(W4, W1, 14, FTAB); step_Bi(W1, W2, 13, FTAB); step_Bi(W2, W3, 12, FTAB); step_Bi(W3, W4, 11, FTAB); step_Bi(W4, W1, 10, FTAB); step_Bi(W1, W2, 9, FTAB); step_Ai(W1, W2, 8, FTAB); step_Ai(W2, W3, 7, FTAB); step_Ai(W3, W4, 6, FTAB); step_Ai(W4, W1, 5, FTAB); step_Ai(W1, W2, 4, FTAB); step_Ai(W2, W3, 3, FTAB); step_Ai(W3, W4, 2, FTAB); step_Ai(W4, W1, 1, FTAB); store_le(out, W4, W3, W2, W1); in += BLOCK_SIZE; out += BLOCK_SIZE; } } /* * Skipjack Key Schedule */ void Skipjack::key_schedule(const byte key[], u32bit) { static const byte F[256] = { 0xA3, 0xD7, 0x09, 0x83, 0xF8, 0x48, 0xF6, 0xF4, 0xB3, 0x21, 0x15, 0x78, 0x99, 0xB1, 0xAF, 0xF9, 0xE7, 0x2D, 0x4D, 0x8A, 0xCE, 0x4C, 0xCA, 0x2E, 0x52, 0x95, 0xD9, 0x1E, 0x4E, 0x38, 0x44, 0x28, 0x0A, 0xDF, 0x02, 0xA0, 0x17, 0xF1, 0x60, 0x68, 0x12, 0xB7, 0x7A, 0xC3, 0xE9, 0xFA, 0x3D, 0x53, 0x96, 0x84, 0x6B, 0xBA, 0xF2, 0x63, 0x9A, 0x19, 0x7C, 0xAE, 0xE5, 0xF5, 0xF7, 0x16, 0x6A, 0xA2, 0x39, 0xB6, 0x7B, 0x0F, 0xC1, 0x93, 0x81, 0x1B, 0xEE, 0xB4, 0x1A, 0xEA, 0xD0, 0x91, 0x2F, 0xB8, 0x55, 0xB9, 0xDA, 0x85, 0x3F, 0x41, 0xBF, 0xE0, 0x5A, 0x58, 0x80, 0x5F, 0x66, 0x0B, 0xD8, 0x90, 0x35, 0xD5, 0xC0, 0xA7, 0x33, 0x06, 0x65, 0x69, 0x45, 0x00, 0x94, 0x56, 0x6D, 0x98, 0x9B, 0x76, 0x97, 0xFC, 0xB2, 0xC2, 0xB0, 0xFE, 0xDB, 0x20, 0xE1, 0xEB, 0xD6, 0xE4, 0xDD, 0x47, 0x4A, 0x1D, 0x42, 0xED, 0x9E, 0x6E, 0x49, 0x3C, 0xCD, 0x43, 0x27, 0xD2, 0x07, 0xD4, 0xDE, 0xC7, 0x67, 0x18, 0x89, 0xCB, 0x30, 0x1F, 0x8D, 0xC6, 0x8F, 0xAA, 0xC8, 0x74, 0xDC, 0xC9, 0x5D, 0x5C, 0x31, 0xA4, 0x70, 0x88, 0x61, 0x2C, 0x9F, 0x0D, 0x2B, 0x87, 0x50, 0x82, 0x54, 0x64, 0x26, 0x7D, 0x03, 0x40, 0x34, 0x4B, 0x1C, 0x73, 0xD1, 0xC4, 0xFD, 0x3B, 0xCC, 0xFB, 0x7F, 0xAB, 0xE6, 0x3E, 0x5B, 0xA5, 0xAD, 0x04, 0x23, 0x9C, 0x14, 0x51, 0x22, 0xF0, 0x29, 0x79, 0x71, 0x7E, 0xFF, 0x8C, 0x0E, 0xE2, 0x0C, 0xEF, 0xBC, 0x72, 0x75, 0x6F, 0x37, 0xA1, 0xEC, 0xD3, 0x8E, 0x62, 0x8B, 0x86, 0x10, 0xE8, 0x08, 0x77, 0x11, 0xBE, 0x92, 0x4F, 0x24, 0xC5, 0x32, 0x36, 0x9D, 0xCF, 0xF3, 0xA6, 0xBB, 0xAC, 0x5E, 0x6C, 0xA9, 0x13, 0x57, 0x25, 0xB5, 0xE3, 0xBD, 0xA8, 0x3A, 0x01, 0x05, 0x59, 0x2A, 0x46 }; for(u32bit i = 0; i != 10; ++i) for(u32bit j = 0; j != 256; ++j) FTAB[256*i+j] = F[j ^ key[9-i]]; } /* * Clear memory of sensitive data */ void Skipjack::clear() { zeroise(FTAB); } }