/* * SEED * (C) 1999-2007 Jack Lloyd * * Distributed under the terms of the Botan license */ #include #include namespace Botan { /* * SEED G Function */ u32bit SEED::G_FUNC::operator()(u32bit X) const { return (S0[get_byte(3, X)] ^ S1[get_byte(2, X)] ^ S2[get_byte(1, X)] ^ S3[get_byte(0, X)]); } /* * SEED Encryption */ void SEED::encrypt_n(const byte in[], byte out[], size_t blocks) const { for(size_t i = 0; i != blocks; ++i) { u32bit B0 = load_be(in, 0); u32bit B1 = load_be(in, 1); u32bit B2 = load_be(in, 2); u32bit B3 = load_be(in, 3); G_FUNC G; for(size_t j = 0; j != 16; j += 2) { u32bit T0, T1; T0 = B2 ^ K[2*j]; T1 = G(B2 ^ B3 ^ K[2*j+1]); T0 = G(T1 + T0); T1 = G(T1 + T0); B1 ^= T1; B0 ^= T0 + T1; T0 = B0 ^ K[2*j+2]; T1 = G(B0 ^ B1 ^ K[2*j+3]); T0 = G(T1 + T0); T1 = G(T1 + T0); B3 ^= T1; B2 ^= T0 + T1; } store_be(out, B2, B3, B0, B1); in += BLOCK_SIZE; out += BLOCK_SIZE; } } /* * SEED Decryption */ void SEED::decrypt_n(const byte in[], byte out[], size_t blocks) const { for(size_t i = 0; i != blocks; ++i) { u32bit B0 = load_be(in, 0); u32bit B1 = load_be(in, 1); u32bit B2 = load_be(in, 2); u32bit B3 = load_be(in, 3); G_FUNC G; for(size_t j = 0; j != 16; j += 2) { u32bit T0, T1; T0 = B2 ^ K[30-2*j]; T1 = G(B2 ^ B3 ^ K[31-2*j]); T0 = G(T1 + T0); T1 = G(T1 + T0); B1 ^= T1; B0 ^= T0 + T1; T0 = B0 ^ K[28-2*j]; T1 = G(B0 ^ B1 ^ K[29-2*j]); T0 = G(T1 + T0); T1 = G(T1 + T0); B3 ^= T1; B2 ^= T0 + T1; } store_be(out, B2, B3, B0, B1); in += BLOCK_SIZE; out += BLOCK_SIZE; } } /* * SEED Key Schedule */ void SEED::key_schedule(const byte key[], u32bit) { const u32bit RC[16] = { 0x9E3779B9, 0x3C6EF373, 0x78DDE6E6, 0xF1BBCDCC, 0xE3779B99, 0xC6EF3733, 0x8DDE6E67, 0x1BBCDCCF, 0x3779B99E, 0x6EF3733C, 0xDDE6E678, 0xBBCDCCF1, 0x779B99E3, 0xEF3733C6, 0xDE6E678D, 0xBCDCCF1B }; SecureVector WK(4); for(size_t i = 0; i != 4; ++i) WK[i] = load_be(key, i); G_FUNC G; for(size_t i = 0; i != 16; i += 2) { K[2*i ] = G(WK[0] + WK[2] - RC[i]); K[2*i+1] = G(WK[1] - WK[3] + RC[i]) ^ K[2*i]; byte T = get_byte(3, WK[0]); WK[0] = (WK[0] >> 8) | (get_byte(3, WK[1]) << 24); WK[1] = (WK[1] >> 8) | (T << 24); K[2*i+2] = G(WK[0] + WK[2] - RC[i+1]); K[2*i+3] = G(WK[1] - WK[3] + RC[i+1]) ^ K[2*i+2]; T = get_byte(0, WK[3]); WK[3] = (WK[3] << 8) | get_byte(0, WK[2]); WK[2] = (WK[2] << 8) | T; } } }