/* * IDEA * (C) 1999-2010 Jack Lloyd * * Distributed under the terms of the Botan license */ #include #include namespace Botan { namespace { /* * Multiplication modulo 65537 */ inline u16bit mul(u16bit x, u16bit y) { const u32bit P = static_cast(x) * y; // P ? 0xFFFF : 0 const u16bit P_mask = !P - 1; const u32bit P_hi = P >> 16; const u32bit P_lo = P & 0xFFFF; const u16bit r_1 = (P_lo - P_hi) + (P_lo < P_hi); const u16bit r_2 = 1 - x - y; return (r_1 & P_mask) | (r_2 & ~P_mask); } /* * Find multiplicative inverses modulo 65537 * * 65537 is prime; thus Fermat's little theorem tells us that * x^65537 == x modulo 65537, which means * x^(65537-2) == x^-1 modulo 65537 since * x^(65537-2) * x == 1 mod 65537 * * Do the exponentiation with a basic square and multiply: all bits are * of exponent are 1 so we always multiply */ u16bit mul_inv(u16bit x) { u16bit y = x; for(size_t i = 0; i != 15; ++i) { y = mul(y, y); // square y = mul(y, x); } return y; } /** * IDEA is involutional, depending only on the key schedule */ void idea_op(const byte in[], byte out[], size_t blocks, const u16bit K[52]) { const u32bit BLOCK_SIZE = 8; for(size_t i = 0; i != blocks; ++i) { u16bit X1 = load_be(in, 0); u16bit X2 = load_be(in, 1); u16bit X3 = load_be(in, 2); u16bit X4 = load_be(in, 3); for(size_t j = 0; j != 8; ++j) { X1 = mul(X1, K[6*j+0]); X2 += K[6*j+1]; X3 += K[6*j+2]; X4 = mul(X4, K[6*j+3]); u16bit T0 = X3; X3 = mul(X3 ^ X1, K[6*j+4]); u16bit T1 = X2; X2 = mul((X2 ^ X4) + X3, K[6*j+5]); X3 += X2; X1 ^= X2; X4 ^= X3; X2 ^= T0; X3 ^= T1; } X1 = mul(X1, K[48]); X2 += K[50]; X3 += K[49]; X4 = mul(X4, K[51]); store_be(out, X1, X3, X2, X4); in += BLOCK_SIZE; out += BLOCK_SIZE; } } } /* * IDEA Encryption */ void IDEA::encrypt_n(const byte in[], byte out[], size_t blocks) const { idea_op(in, out, blocks, &EK[0]); } /* * IDEA Decryption */ void IDEA::decrypt_n(const byte in[], byte out[], size_t blocks) const { idea_op(in, out, blocks, &DK[0]); } /* * IDEA Key Schedule */ void IDEA::key_schedule(const byte key[], size_t) { for(size_t i = 0; i != 8; ++i) EK[i] = load_be(key, i); for(size_t i = 1, j = 8, offset = 0; j != 52; i %= 8, ++i, ++j) { EK[i+7+offset] = static_cast((EK[(i % 8) + offset] << 9) | (EK[((i+1) % 8) + offset] >> 7)); offset += (i == 8) ? 8 : 0; } DK[51] = mul_inv(EK[3]); DK[50] = -EK[2]; DK[49] = -EK[1]; DK[48] = mul_inv(EK[0]); for(size_t i = 1, j = 4, counter = 47; i != 8; ++i, j += 6) { DK[counter--] = EK[j+1]; DK[counter--] = EK[j]; DK[counter--] = mul_inv(EK[j+5]); DK[counter--] = -EK[j+3]; DK[counter--] = -EK[j+4]; DK[counter--] = mul_inv(EK[j+2]); } DK[5] = EK[47]; DK[4] = EK[46]; DK[3] = mul_inv(EK[51]); DK[2] = -EK[50]; DK[1] = -EK[49]; DK[0] = mul_inv(EK[48]); } }