/* Factor integers using a combination of trial division by small primes, and Pollard's Rho algorithm */ #include #include #include using namespace Botan; #include #include // Pollard's Rho algorithm, as described in the MIT algorithms book // We use (x^2+x) mod n instead of (x*2-1) mod n as the random function, // it _seems_ to lead to faster factorization for the values I tried. BigInt rho(const BigInt& n) { BigInt x = random_integer(0, n-1); BigInt y = x; BigInt d = 0; Modular_Reducer mod_n(n); u32bit i = 1, k = 2; while(true) { i++; if(i == 0) // overflow, bail out break; x = mod_n.multiply((x + 1), x); d = gcd(y - x, n); if(d != 1 && d != n) return d; if(i == k) { y = x; k = 2*k; } } return 0; } // Remove (and return) any small (< 2^16) factors std::vector remove_small_factors(BigInt& n) { std::vector factors; while(n.is_even()) { factors.push_back(2); n /= 2; } for(u32bit j = 0; j != PRIME_TABLE_SIZE; j++) { if(n < PRIMES[j]) break; BigInt x = gcd(n, PRIMES[j]); if(x != 1) { n /= x; u32bit occurs = 0; while(x != 1) { x /= PRIMES[j]; occurs++; } for(u32bit k = 0; k != occurs; k++) factors.push_back(PRIMES[j]); } } return factors; } std::vector factorize(const BigInt& n_in) { BigInt n = n_in; std::vector factors = remove_small_factors(n); while(n != 1) { if(is_prime(n)) { factors.push_back(n); break; } BigInt a_factor = 0; while(a_factor == 0) a_factor = rho(n); std::vector rho_factored = factorize(a_factor); for(u32bit j = 0; j != rho_factored.size(); j++) factors.push_back(rho_factored[j]); n /= a_factor; } return factors; } int main(int argc, char* argv[]) { if(argc != 2) { std::cerr << "Usage: " << argv[0] << " integer\n"; return 1; } try { LibraryInitializer init; BigInt n(argv[1]); std::vector factors = factorize(n); std::sort(factors.begin(), factors.end()); std::cout << n << ": "; for(u32bit j = 0; j != factors.size(); j++) std::cout << factors[j] << " "; std::cout << "\n"; } catch(std::exception& e) { std::cout << e.what() << std::endl; return 1; } return 0; }