#include #include #include #include #include #if defined(BOTAN_HAS_RSA) #include #endif #if defined(BOTAN_HAS_DSA) #include #endif #if defined(BOTAN_HAS_DIFFIE_HELLMAN) #include #endif #if defined(BOTAN_HAS_NYBERG_RUEPPEL) #include #endif #if defined(BOTAN_HAS_RW) #include #endif #if defined(BOTAN_HAS_ELGAMAL) #include #endif #if defined(BOTAN_HAS_DLIES) #include #endif using namespace Botan; #include "common.h" #include "timer.h" #include "bench.h" #include #include #include #include namespace { void benchmark_enc_dec(PK_Encryptor& enc, PK_Decryptor& dec, Timer& enc_timer, Timer& dec_timer, RandomNumberGenerator& rng, u32bit runs, double seconds) { SecureVector plaintext, ciphertext; for(u32bit i = 0; i != runs; ++i) { if(enc_timer.seconds() < seconds || ciphertext.size() == 0) { plaintext.create(enc.maximum_input_size()); // Ensure for Raw, etc, it stays large if((i % 100) == 0) { rng.randomize(plaintext.begin(), plaintext.size()); plaintext[0] |= 0x80; } enc_timer.start(); ciphertext = enc.encrypt(plaintext, rng); enc_timer.stop(); } if(dec_timer.seconds() < seconds) { dec_timer.start(); SecureVector plaintext_out = dec.decrypt(ciphertext); dec_timer.stop(); if(plaintext_out != plaintext) { // has never happened... std::cerr << "Contents mismatched on decryption during benchmark!\n"; } } } } void benchmark_sig_ver(PK_Verifier& ver, PK_Signer& sig, Timer& verify_timer, Timer& sig_timer, RandomNumberGenerator& rng, u32bit runs, double seconds) { SecureVector message, signature, sig_random; for(u32bit i = 0; i != runs; ++i) { if(sig_timer.seconds() < seconds || signature.size() == 0) { if((i % 100) == 0) { message.create(48); rng.randomize(message.begin(), message.size()); } sig_timer.start(); signature = sig.sign_message(message, rng); sig_timer.stop(); } if(verify_timer.seconds() < seconds) { verify_timer.start(); bool verified = ver.verify_message(message, signature); verify_timer.stop(); if(!verified) std::cerr << "Signature verification failure\n"; if((i % 100) == 0) { sig_random.create(signature.size()); rng.randomize(sig_random, sig_random.size()); verify_timer.start(); bool verified2 = ver.verify_message(message, sig_random); verify_timer.stop(); if(verified2) std::cerr << "Signature verification failure (bad sig OK)\n"; } } } } /* Between benchmark_rsa_rw + benchmark_dsa_nr: Type of the key Arguments to the constructor (A list of some arbitrary type?) Type of padding */ void benchmark_rsa(RandomNumberGenerator& rng, double seconds, Benchmark_Report& report) { #if defined(BOTAN_HAS_RSA) for(size_t keylen = 1024; keylen <= 4096; keylen += 1024) { Timer keygen_timer("keygen"); Timer verify_timer("verify"); Timer sig_timer("signature"); Timer enc_timer("encrypt"); Timer dec_timer("decrypt"); const std::string sig_padding = "EMSA4(SHA-1)"; const std::string enc_padding = "EME1(SHA-1)"; try { #if 0 // for profiling PKCS8_PrivateKey* pkcs8_key = PKCS8::load_key("rsa/" + to_string(keylen) + ".pem", rng); RSA_PrivateKey* key_ptr = dynamic_cast(pkcs8_key); RSA_PrivateKey key = *key_ptr; #else keygen_timer.start(); RSA_PrivateKey key(rng, keylen); keygen_timer.stop(); #endif while(verify_timer.seconds() < seconds || sig_timer.seconds() < seconds) { std::auto_ptr enc(get_pk_encryptor(key, enc_padding)); std::auto_ptr dec(get_pk_decryptor(key, enc_padding)); benchmark_enc_dec(*enc, *dec, enc_timer, dec_timer, rng, 10000, seconds); std::auto_ptr sig(get_pk_signer(key, sig_padding)); std::auto_ptr ver(get_pk_verifier(key, sig_padding)); benchmark_sig_ver(*ver, *sig, verify_timer, sig_timer, rng, 10000, seconds); } const std::string rsa_keylen = "RSA " + to_string(keylen); report.report(rsa_keylen, keygen_timer); report.report(rsa_keylen + " " + sig_padding, verify_timer); report.report(rsa_keylen + " " + sig_padding, sig_timer); report.report(rsa_keylen + " " + enc_padding, enc_timer); report.report(rsa_keylen + " " + enc_padding, dec_timer); } catch(Stream_IO_Error) { } catch(Exception& e) { std::cout << e.what() << "\n"; } } #endif } void benchmark_rw(RandomNumberGenerator& rng, double seconds, Benchmark_Report& report) { #if defined(BOTAN_HAS_RW) const u32bit keylens[] = { 512, 1024, 2048, 3072, 4096, 6144, 8192, 0 }; for(size_t j = 0; keylens[j]; j++) { u32bit keylen = keylens[j]; Timer keygen_timer("keygen"); Timer verify_timer("verify"); Timer sig_timer("signature"); std::string padding = "EMSA2(SHA-1)"; while(verify_timer.seconds() < seconds || sig_timer.seconds() < seconds) { keygen_timer.start(); RW_PrivateKey key(rng, keylen); keygen_timer.stop(); std::auto_ptr sig(get_pk_signer(key, padding)); std::auto_ptr ver(get_pk_verifier(key, padding)); benchmark_sig_ver(*ver, *sig, verify_timer, sig_timer, rng, 10000, seconds); } const std::string nm = "RW-" + to_string(keylen); report.report(nm, keygen_timer); report.report(nm, verify_timer); report.report(nm, sig_timer); } #endif } template void benchmark_dsa_nr(RandomNumberGenerator& rng, double seconds, Benchmark_Report& report) { #if defined(BOTAN_HAS_NYBERG_RUEPPEL) || defined(BOTAN_HAS_DSA) const char* domains[] = { "dsa/jce/512", "dsa/jce/768", "dsa/jce/1024", "dsa/botan/2048", "dsa/botan/3072", NULL }; const std::string algo_name = PRIV_KEY_TYPE().algo_name(); for(size_t j = 0; domains[j]; j++) { u32bit pbits = to_u32bit(split_on(domains[j], '/')[2]); u32bit qbits = (pbits <= 1024) ? 160 : 256; Timer keygen_timer("keygen"); Timer verify_timer("verify"); Timer sig_timer("signature"); while(verify_timer.seconds() < seconds || sig_timer.seconds() < seconds) { DL_Group group(domains[j]); keygen_timer.start(); PRIV_KEY_TYPE key(rng, group); keygen_timer.stop(); const std::string padding = "EMSA1(SHA-" + to_string(qbits) + ")"; std::auto_ptr sig(get_pk_signer(key, padding)); std::auto_ptr ver(get_pk_verifier(key, padding)); benchmark_sig_ver(*ver, *sig, verify_timer, sig_timer, rng, 1000, seconds); } const std::string nm = algo_name + "-" + to_string(pbits); report.report(nm, keygen_timer); report.report(nm, verify_timer); report.report(nm, sig_timer); } #endif } void benchmark_dh(RandomNumberGenerator& rng, double seconds, Benchmark_Report& report) { #ifdef BOTAN_HAS_DIFFIE_HELLMAN const char* domains[] = { "modp/ietf/768", "modp/ietf/1024", "modp/ietf/2048", "modp/ietf/3072", "modp/ietf/4096", "modp/ietf/6144", "modp/ietf/8192", NULL }; for(size_t j = 0; domains[j]; j++) { Timer keygen_timer("keygen"); Timer kex_timer("kex"); while(kex_timer.seconds() < seconds) { DL_Group group(domains[j]); keygen_timer.start(); DH_PrivateKey dh1(rng, group); keygen_timer.stop(); keygen_timer.start(); DH_PrivateKey dh2(rng, group); keygen_timer.stop(); DH_PublicKey pub1(dh1); DH_PublicKey pub2(dh2); SecureVector secret1, secret2; for(u32bit i = 0; i != 1000; ++i) { if(kex_timer.seconds() > seconds) break; kex_timer.start(); secret1 = dh1.derive_key(pub2); kex_timer.stop(); kex_timer.start(); secret2 = dh2.derive_key(pub1); kex_timer.stop(); if(secret1 != secret2) { std::cerr << "DH secrets did not match, bug in the library!?!\n"; } } } const std::string nm = "DH-" + split_on(domains[j], '/')[2]; report.report(nm, keygen_timer); report.report(nm, kex_timer); } #endif } void benchmark_elg(RandomNumberGenerator& rng, double seconds, Benchmark_Report& report) { #ifdef BOTAN_HAS_ELGAMAL const char* domains[] = { "modp/ietf/768", "modp/ietf/1024", "modp/ietf/2048", "modp/ietf/3072", "modp/ietf/4096", "modp/ietf/6144", "modp/ietf/8192", NULL }; const std::string algo_name = "ElGamal"; for(size_t j = 0; domains[j]; j++) { u32bit pbits = to_u32bit(split_on(domains[j], '/')[2]); Timer keygen_timer("keygen"); Timer enc_timer("encrypt"); Timer dec_timer("decrypt"); while(enc_timer.seconds() < seconds || dec_timer.seconds() < seconds) { DL_Group group(domains[j]); keygen_timer.start(); ElGamal_PrivateKey key(rng, group); keygen_timer.stop(); const std::string padding = "EME1(SHA-1)"; std::auto_ptr dec(get_pk_decryptor(key, padding)); std::auto_ptr enc(get_pk_encryptor(key, padding)); benchmark_enc_dec(*enc, *dec, enc_timer, dec_timer, rng, 1000, seconds); } const std::string nm = algo_name + "-" + to_string(pbits); report.report(nm, keygen_timer); report.report(nm, enc_timer); report.report(nm, dec_timer); } #endif } } void bench_pk(RandomNumberGenerator& rng, const std::string& algo, bool, double seconds) { /* There is some strangeness going on here. It looks like algorithms at the end take some kind of penalty. For example, running the RW tests first got a result of: RW-1024: 148.14 ms / private operation but running them last output: RW-1024: 363.54 ms / private operation I think it's from memory fragmentation in the allocators, but I'm not really sure. Need to investigate. Until then, I've basically ordered the tests in order of most important algorithms (RSA, DSA) to least important (NR, RW). This strange behaviour does not seem to occur with DH (?) To get more accurate runs, use --bench-algo (RSA|DSA|DH|ELG|NR); in this case the distortion is less than 5%, which is good enough. We do random keys with the DL schemes, since it's so easy and fast to generate keys for them. For RSA and RW, we load the keys from a file. The RSA keys are stored in a PKCS #8 structure, while RW is stored in a more ad-hoc format (the RW algorithm has no assigned OID that I know of, so there is no way to encode a RW key into a PKCS #8 structure). */ global_state().set_option("pk/test/private_gen", "basic"); Benchmark_Report report; if(algo == "All" || algo == "RSA") benchmark_rsa(rng, seconds, report); #if defined(BOTAN_HAS_DSA) if(algo == "All" || algo == "DSA") benchmark_dsa_nr(rng, seconds, report); #endif if(algo == "All" || algo == "DH") benchmark_dh(rng, seconds, report); if(algo == "All" || algo == "ELG" || algo == "ElGamal") benchmark_elg(rng, seconds, report); #if defined(BOTAN_HAS_NYBERG_RUEPPEL) if(algo == "All" || algo == "NR") benchmark_dsa_nr(rng, seconds, report); #endif if(algo == "All" || algo == "RW") benchmark_rw(rng, seconds, report); }