/****************************************************** * ECDSA tests * * * * (C) 2007 Falko Strenzke * * Manuel Hartl * * 2008 Jack Lloyd * ******************************************************/ #include "validate.h" #if defined(BOTAN_HAS_ECDSA) #include #include #include #include #include #include #include #include #include "common.h" using namespace Botan; #define TEST_DATA_DIR "checks/ecc_testdata" #define CHECK_MESSAGE(expr, print) try { if(!(expr)) std::cout << print << "\n"; } catch(std::exception& e) { std::cout << __FUNCTION__ << ": " << e.what() << "\n"; } #define CHECK(expr) try { if(!(expr)) std::cout << #expr << "\n"; } catch(std::exception& e) { std::cout << __FUNCTION__ << ": " << e.what() << "\n"; } namespace { std::string to_hex(const SecureVector& bin) { return hex_encode(bin.begin(), bin.size()); } /** * Tests whether the the signing routine will work correctly in case the integer e * that is constructed from the message (thus the hash value) is larger than n, the order of the base point. * Tests the signing function of the pk signer object */ void test_hash_larger_than_n(RandomNumberGenerator& rng) { std::cout << "." << std::flush; EC_Domain_Params dom_pars(get_EC_Dom_Pars_by_oid("1.3.132.0.8")); // n: // 0x0100000000000000000001f4c8f927aed3ca752257 // 21 bytes // -> shouldn't work with SHA224 which outputs 23 bytes ECDSA_PrivateKey priv_key(rng, dom_pars); SecureVector message; for (unsigned j= 0; j<20; j++) { message.append(j); } for (int i = 0; i<3; i++) { //cout << "i = " << i << endl; std::string format; if(i==1) { format = "EMSA1_BSI(SHA-224)"; } else { format = "EMSA1_BSI(SHA-1)"; } std::auto_ptr pk_signer(get_pk_signer(priv_key, format)); SecureVector signature; bool sig_exc = false; try { signature = pk_signer->sign_message(message, rng); } catch(Encoding_Error e) { sig_exc = true; } if(i==1) { CHECK(sig_exc); } if(i==0) { CHECK(!sig_exc); } if(i==0) // makes no sense to check for sha224 { std::auto_ptr pk_verifier(get_pk_verifier(priv_key, format)); bool ver = pk_verifier->verify_message(message, signature); CHECK(ver); } } // for // now check that verification alone fails // sign it with the normal EMSA1 std::auto_ptr pk_signer(get_pk_signer(priv_key, "EMSA1(SHA-224)")); SecureVector signature = pk_signer->sign_message(message, rng); std::auto_ptr pk_verifier(get_pk_verifier(priv_key, "EMSA1_BSI(SHA-224)")); // verify against EMSA1_BSI // we make sure it doesn't fail because of the invalid signature, // but because of the Encoding_Error bool ver_exc = false; try { pk_verifier->verify_message(message, signature); } catch(Encoding_Error e) { ver_exc = true; } CHECK(ver_exc); } /** * Tests whether the the signing routine will work correctly in case the integer e * that is constructed from the message is larger than n, the order of the base point */ void test_message_larger_than_n(RandomNumberGenerator& rng) { std::cout << "." << std::flush; EC_Domain_Params dom_pars(get_EC_Dom_Pars_by_oid("1.3.132.0.8")); ECDSA_PrivateKey priv_key(rng, dom_pars); std::string str_message = ("12345678901234567890abcdef1212345678901234567890abcdef1212345678901234567890abcdef12"); SecureVector sv_message = decode_hex(str_message); bool thrn = false; SecureVector signature; try { signature = priv_key.sign(sv_message.begin(), sv_message.size(), rng); } catch (Invalid_Argument e) { thrn = true; } //cout << "signature = " << hex_encode(signature.begin(), signature.size()) << "\n"; bool ver_success = priv_key.verify(sv_message.begin(), sv_message.size(), signature.begin(), signature.size()); CHECK_MESSAGE(ver_success, "generated signature could not be verified positively"); //CHECK_MESSAGE(thrn, "no exception was thrown although message to sign was too long"); } void test_decode_ecdsa_X509() { std::cout << "." << std::flush; X509_Certificate cert(TEST_DATA_DIR "/CSCA.CSCA.csca-germany.1.crt"); CHECK_MESSAGE(OIDS::lookup(cert.signature_algorithm().oid) == "ECDSA/EMSA1_BSI(SHA-224)", "error reading signature algorithm from x509 ecdsa certificate"); CHECK_MESSAGE(to_hex(cert.serial_number()) == "01", "error reading serial from x509 ecdsa certificate"); CHECK_MESSAGE(to_hex(cert.authority_key_id()) == "0096452DE588F966C4CCDF161DD1F3F5341B71E7", "error reading authority key id from x509 ecdsa certificate"); CHECK_MESSAGE(to_hex(cert.subject_key_id()) == "0096452DE588F966C4CCDF161DD1F3F5341B71E7", "error reading Subject key id from x509 ecdsa certificate"); std::auto_ptr pubkey(cert.subject_public_key()); bool ver_ec = cert.check_signature(*pubkey); CHECK_MESSAGE(ver_ec, "could not positively verify correct selfsigned x509-ecdsa certificate"); } void test_decode_ver_link_SHA256() { std::cout << "." << std::flush; X509_Certificate root_cert(TEST_DATA_DIR "/root2_SHA256.cer"); X509_Certificate link_cert(TEST_DATA_DIR "/link_SHA256.cer"); std::auto_ptr pubkey(root_cert.subject_public_key()); bool ver_ec = link_cert.check_signature(*pubkey); CHECK_MESSAGE(ver_ec, "could not positively verifiy correct SHA256 link x509-ecdsa certificate"); } void test_decode_ver_link_SHA1() { std::cout << "." << std::flush; X509_Certificate root_cert(TEST_DATA_DIR "/root_SHA1.163.crt"); X509_Certificate link_cert(TEST_DATA_DIR "/link_SHA1.166.crt"); std::auto_ptr pubkey(root_cert.subject_public_key()); bool ver_ec = link_cert.check_signature(*pubkey); CHECK_MESSAGE(ver_ec, "could not positively verifiy correct SHA1 link x509-ecdsa certificate"); } void test_sign_then_ver(RandomNumberGenerator& rng) { std::cout << "." << std::flush; std::string g_secp("024a96b5688ef573284664698968c38bb913cbfc82"); SecureVector sv_g_secp = decode_hex(g_secp); BigInt bi_p_secp("0xffffffffffffffffffffffffffffffff7fffffff"); BigInt bi_a_secp("0xffffffffffffffffffffffffffffffff7ffffffc"); BigInt bi_b_secp("0x1c97befc54bd7a8b65acf89f81d4d4adc565fa45"); BigInt order = BigInt("0x0100000000000000000001f4c8f927aed3ca752257"); CurveGFp curve(GFpElement(bi_p_secp,bi_a_secp), GFpElement(bi_p_secp, bi_b_secp), bi_p_secp); BigInt cofactor = BigInt(1); PointGFp p_G = OS2ECP ( sv_g_secp, curve ); EC_Domain_Params dom_pars = EC_Domain_Params(curve, p_G, order, cofactor); ECDSA_PrivateKey my_priv_key(rng, dom_pars); std::string str_message = ("12345678901234567890abcdef12"); SecureVector sv_message = decode_hex(str_message); SecureVector signature = my_priv_key.sign(sv_message.begin(), sv_message.size(), rng); //cout << "signature = " << hex_encode(signature.begin(), signature.size()) << "\n"; bool ver_success = my_priv_key.verify(sv_message.begin(), sv_message.size(), signature.begin(), signature.size()); CHECK_MESSAGE(ver_success, "generated signature could not be verified positively"); signature[signature.size()-1] += 0x01; bool ver_must_fail = my_priv_key.verify(sv_message.begin(), sv_message.size(), signature.begin(), signature.size()); CHECK_MESSAGE(!ver_must_fail, "corrupted signature could be verified positively"); } bool test_ec_sign(RandomNumberGenerator& rng) { std::cout << "." << std::flush; try { EC_Domain_Params dom_pars(get_EC_Dom_Pars_by_oid("1.3.132.0.8")); ECDSA_PrivateKey priv_key(rng, dom_pars); std::string pem_encoded_key = PKCS8::PEM_encode(priv_key); std::auto_ptr signer(get_pk_signer(priv_key, "EMSA1(SHA-224)")); std::auto_ptr verifier(get_pk_verifier(priv_key, "EMSA1(SHA-224)")); for(u32bit i = 0; i != 256; ++i) signer->update((byte)i); SecureVector sig = signer->signature(rng); for(u32bit i = 0; i != 256; ++i) verifier->update((byte)i); if(!verifier->check_signature(sig)) { std::cout << "ECDSA self-test failed!"; return false; } // now check valid signature, different input for(u32bit i = 1; i != 256; ++i) //starting from 1 verifier->update((byte)i); if(verifier->check_signature(sig)) { std::cout << "ECDSA with bad input passed validation"; return false; } // now check with original input, modified signature sig[sig.size()/2]++; for(u32bit i = 0; i != 256; ++i) verifier->update((byte)i); if(verifier->check_signature(sig)) { std::cout << "ECDSA with bad signature passed validation"; return false; } } catch (std::exception& e) { std::cout << "Exception in test_ec_sign - " << e.what() << "\n"; return false; } return true; } void test_create_pkcs8(RandomNumberGenerator& rng) { std::cout << "." << std::flush; try { RSA_PrivateKey rsa_key(rng, 1024); //RSA_PrivateKey rsa_key2(1024); //cout << "\nequal: " << (rsa_key == rsa_key2) << "\n"; //DSA_PrivateKey key(DL_Group("dsa/jce/1024")); std::ofstream rsa_priv_key(TEST_DATA_DIR "/rsa_private.pkcs8.pem"); rsa_priv_key << PKCS8::PEM_encode(rsa_key); EC_Domain_Params dom_pars(get_EC_Dom_Pars_by_oid("1.3.132.0.8")); ECDSA_PrivateKey key(rng, dom_pars); // later used by other tests :( std::ofstream priv_key(TEST_DATA_DIR "/wo_dompar_private.pkcs8.pem"); priv_key << PKCS8::PEM_encode(key); } catch (std::exception& e) { std::cout << "Exception: " << e.what() << std::endl; } } void test_create_and_verify(RandomNumberGenerator& rng) { std::cout << "." << std::flush; EC_Domain_Params dom_pars(get_EC_Dom_Pars_by_oid("1.3.132.0.8")); ECDSA_PrivateKey key(rng, dom_pars); std::ofstream priv_key(TEST_DATA_DIR "/dompar_private.pkcs8.pem"); priv_key << PKCS8::PEM_encode(key); std::auto_ptr loaded_key(PKCS8::load_key(TEST_DATA_DIR "/wo_dompar_private.pkcs8.pem", rng)); ECDSA_PrivateKey* loaded_ec_key = dynamic_cast(loaded_key.get()); CHECK_MESSAGE(loaded_ec_key, "the loaded key could not be converted into an ECDSA_PrivateKey"); std::auto_ptr loaded_key_1(PKCS8::load_key(TEST_DATA_DIR "/rsa_private.pkcs8.pem", rng)); ECDSA_PrivateKey* loaded_rsa_key = dynamic_cast(loaded_key_1.get()); CHECK_MESSAGE(!loaded_rsa_key, "the loaded key is ECDSA_PrivateKey -> shouldn't be, is a RSA-Key"); //calc a curve which is not in the registry // string p_secp = "2117607112719756483104013348936480976596328609518055062007450442679169492999007105354629105748524349829824407773719892437896937279095106809"; std::string a_secp = "0a377dede6b523333d36c78e9b0eaa3bf48ce93041f6d4fc34014d08f6833807498deedd4290101c5866e8dfb589485d13357b9e78c2d7fbe9fe"; std::string b_secp = "0a9acf8c8ba617777e248509bcb4717d4db346202bf9e352cd5633731dd92a51b72a4dc3b3d17c823fcc8fbda4da08f25dea89046087342595a7"; std::string G_secp_comp = "04081523d03d4f12cd02879dea4bf6a4f3a7df26ed888f10c5b2235a1274c386a2f218300dee6ed217841164533bcdc903f07a096f9fbf4ee95bac098a111f296f5830fe5c35b3e344d5df3a2256985f64fbe6d0edcc4c61d18bef681dd399df3d0194c5a4315e012e0245ecea56365baa9e8be1f7"; std::string order_g = "0e1a16196e6000000000bc7f1618d867b15bb86474418f"; // ::SecureVector sv_p_secp = decode_hex ( p_secp ); SecureVector sv_a_secp = decode_hex ( a_secp ); SecureVector sv_b_secp = decode_hex ( b_secp ); SecureVector sv_G_secp_comp = decode_hex ( G_secp_comp ); SecureVector sv_order_g = decode_hex ( order_g ); // BigInt bi_p_secp = BigInt::decode ( sv_p_secp.begin(), sv_p_secp.size() ); BigInt bi_p_secp("2117607112719756483104013348936480976596328609518055062007450442679169492999007105354629105748524349829824407773719892437896937279095106809"); BigInt bi_a_secp = BigInt::decode ( sv_a_secp.begin(), sv_a_secp.size() ); BigInt bi_b_secp = BigInt::decode ( sv_b_secp.begin(), sv_b_secp.size() ); BigInt bi_order_g = BigInt::decode ( sv_order_g.begin(), sv_order_g.size() ); CurveGFp curve ( GFpElement ( bi_p_secp,bi_a_secp ), GFpElement ( bi_p_secp, bi_b_secp ), bi_p_secp ); PointGFp p_G = OS2ECP ( sv_G_secp_comp, curve ); EC_Domain_Params dom_params(curve, p_G, bi_order_g, BigInt(1)); p_G.check_invariants(); ECDSA_PrivateKey key_odd_oid(rng, dom_params); std::string key_odd_oid_str = PKCS8::PEM_encode(key_odd_oid); DataSource_Memory key_data_src(key_odd_oid_str); std::auto_ptr loaded_key2(PKCS8::load_key(key_data_src, rng)); if(!dynamic_cast(loaded_key.get())) { std::cout << "Failed to reload an ECDSA key with unusual parameter set\n"; } } void test_curve_registry(RandomNumberGenerator& rng) { std::vector oids; oids.push_back("1.3.132.0.8"); oids.push_back("1.2.840.10045.3.1.1"); oids.push_back("1.2.840.10045.3.1.2"); oids.push_back("1.2.840.10045.3.1.3"); oids.push_back("1.2.840.10045.3.1.4"); oids.push_back("1.2.840.10045.3.1.5"); oids.push_back("1.2.840.10045.3.1.6"); oids.push_back("1.2.840.10045.3.1.7"); oids.push_back("1.3.132.0.6"); oids.push_back("1.3.132.0.7"); oids.push_back("1.3.132.0.28"); oids.push_back("1.3.132.0.29"); oids.push_back("1.3.132.0.9"); oids.push_back("1.3.132.0.30"); oids.push_back("1.3.132.0.31"); oids.push_back("1.3.132.0.32"); oids.push_back("1.3.132.0.33"); oids.push_back("1.3.132.0.10"); oids.push_back("1.3.132.0.34"); oids.push_back("1.3.132.0.35"); oids.push_back("1.3.6.1.4.1.8301.3.1.2.9.0.38"); oids.push_back("1.3.36.3.3.2.8.1.1.1"); oids.push_back("1.3.36.3.3.2.8.1.1.3"); oids.push_back("1.3.36.3.3.2.8.1.1.5"); oids.push_back("1.3.36.3.3.2.8.1.1.7"); oids.push_back("1.3.36.3.3.2.8.1.1.9"); oids.push_back("1.3.36.3.3.2.8.1.1.11"); oids.push_back("1.3.36.3.3.2.8.1.1.13"); unsigned int i; for (i = 0; i < oids.size(); i++) { std::cout << "." << std::flush; try { EC_Domain_Params dom_pars(get_EC_Dom_Pars_by_oid(oids[i])); dom_pars.get_base_point().check_invariants(); ECDSA_PrivateKey key(rng, dom_pars); std::string str_message = ("12345678901234567890abcdef12"); SecureVector sv_message = decode_hex(str_message); SecureVector signature = key.sign(sv_message.begin(), sv_message.size(), rng); bool ver_success = key.verify(sv_message.begin(), sv_message.size(), signature.begin(), signature.size()); CHECK_MESSAGE(ver_success, "generated signature could not be verified positively"); } catch(Invalid_Argument& e) { std::cout << "Error testing curve " << oids[i] << " - " << e.what() << "\n"; } } // std::cout << "test_curve_registry finished" << endl; } void test_read_pkcs8(RandomNumberGenerator& rng) { std::cout << "." << std::flush; try { std::auto_ptr loaded_key(PKCS8::load_key(TEST_DATA_DIR "/wo_dompar_private.pkcs8.pem", rng)); ECDSA_PrivateKey* loaded_ec_key = dynamic_cast(loaded_key.get()); CHECK_MESSAGE(loaded_ec_key, "the loaded key could not be converted into an ECDSA_PrivateKey"); std::string str_message = ("12345678901234567890abcdef12"); SecureVector sv_message = decode_hex(str_message); SecureVector signature = loaded_ec_key->sign(sv_message.begin(), sv_message.size(), rng); //cout << "signature = " << hex_encode(signature.begin(), signature.size()) << "\n"; bool ver_success = loaded_ec_key->verify(sv_message.begin(), sv_message.size(), signature.begin(), signature.size()); CHECK_MESSAGE(ver_success, "generated signature could not be verified positively"); std::auto_ptr loaded_key_nodp(PKCS8::load_key(TEST_DATA_DIR "/nodompar_private.pkcs8.pem", rng)); // anew in each test with unregistered domain-parameters ECDSA_PrivateKey* loaded_ec_key_nodp = dynamic_cast(loaded_key_nodp.get()); CHECK_MESSAGE(loaded_ec_key_nodp, "the loaded key could not be converted into an ECDSA_PrivateKey"); SecureVector signature_nodp = loaded_ec_key_nodp->sign(sv_message.begin(), sv_message.size(), rng); //cout << "signature = " << hex_encode(signature.begin(), signature.size()) << "\n"; bool ver_success_nodp = loaded_ec_key_nodp->verify(sv_message.begin(), sv_message.size(), signature_nodp.begin(), signature_nodp.size()); CHECK_MESSAGE(ver_success_nodp, "generated signature could not be verified positively (no_dom)"); try { std::auto_ptr loaded_key_withdp(PKCS8::load_key(TEST_DATA_DIR "/withdompar_private.pkcs8.pem", rng)); std::cout << "Unexpected success: loaded key with unknown OID\n"; } catch (std::exception& e) { /* OK */ } } catch (std::exception& e) { std::cout << "Exception in test_read_pkcs8 - " << e.what() << "\n"; } } /** * The following test tests the copy ctors and and copy-assignment operators */ void test_cp_and_as_ctors(RandomNumberGenerator& rng) { std::cout << "." << std::flush; std::auto_ptr loaded_key(PKCS8::load_key(TEST_DATA_DIR "/wo_dompar_private.pkcs8.pem", rng)); ECDSA_PrivateKey* loaded_ec_key = dynamic_cast(loaded_key.get()); CHECK_MESSAGE(loaded_ec_key, "the loaded key could not be converted into an ECDSA_PrivateKey"); std::string str_message = ("12345678901234567890abcdef12"); SecureVector sv_message = decode_hex(str_message); SecureVector signature_1 = loaded_ec_key->sign(sv_message.begin(), sv_message.size(), rng); //cout << "signature = " << hex_encode(signature.begin(), signature.size()) << "\n"; ECDSA_PrivateKey cp_priv_key(*loaded_ec_key); // priv-key, cp-ctor SecureVector signature_2 = cp_priv_key.sign(sv_message.begin(), sv_message.size(), rng); ECDSA_PrivateKey as_priv_key = *loaded_ec_key; //priv-key, as-op SecureVector signature_3 = as_priv_key.sign(sv_message.begin(), sv_message.size(), rng); ECDSA_PublicKey pk_1 = cp_priv_key; // pub-key, as-op ECDSA_PublicKey pk_2(pk_1); // pub-key, cp-ctor ECDSA_PublicKey pk_3; pk_3 = pk_2; // pub-key, as-op bool ver_success_1 = pk_1.verify(sv_message.begin(), sv_message.size(), signature_1.begin(), signature_1.size()); bool ver_success_2 = pk_2.verify(sv_message.begin(), sv_message.size(), signature_2.begin(), signature_2.size()); bool ver_success_3 = pk_3.verify(sv_message.begin(), sv_message.size(), signature_3.begin(), signature_3.size()); CHECK_MESSAGE((ver_success_1 && ver_success_2 && ver_success_3), "different results for copied keys"); } /** * The following test tests whether ECDSA keys exhibit correct behaviour when it is * attempted to use them in an uninitialized state */ void test_non_init_ecdsa_keys(RandomNumberGenerator& rng) { std::cout << "." << std::flush; std::auto_ptr loaded_key(PKCS8::load_key(TEST_DATA_DIR "/wo_dompar_private.pkcs8.pem", rng)); //ECDSA_PrivateKey* loaded_ec_key = dynamic_cast(loaded_key.get()); //CHECK_MESSAGE(loaded_ec_key, "the loaded key could not be converted into an ECDSA_PrivateKey"); std::string str_message = ("12345678901234567890abcdef12"); ECDSA_PrivateKey empty_priv; ECDSA_PublicKey empty_pub; SecureVector sv_message = decode_hex(str_message); bool exc1 = false; try { SecureVector signature_1 = empty_priv.sign(sv_message.begin(), sv_message.size(), rng); } catch (std::exception e) { exc1 = true; } CHECK_MESSAGE(exc1, "there was no exception thrown when attempting to use an uninitialized ECDSA key"); bool exc2 = false; try { empty_pub.verify(sv_message.begin(), sv_message.size(), sv_message.begin(), sv_message.size()); } catch (std::exception e) { exc2 = true; } CHECK_MESSAGE(exc2, "there was no exception thrown when attempting to use an uninitialized ECDSA key"); } } u32bit do_ecdsa_tests(Botan::RandomNumberGenerator& rng) { std::cout << "Testing ECDSA (InSiTo unit tests): "; test_hash_larger_than_n(rng); //test_message_larger_than_n(); test_decode_ecdsa_X509(); test_decode_ver_link_SHA256(); test_decode_ver_link_SHA1(); test_sign_then_ver(rng); test_ec_sign(rng); test_create_pkcs8(rng); test_create_and_verify(rng); test_curve_registry(rng); test_read_pkcs8(rng); test_cp_and_as_ctors(rng); test_non_init_ecdsa_keys(rng); std::cout << std::endl; return 0; } #else u32bit do_ecdsa_tests(Botan::RandomNumberGenerator&) { return 0; } #endif