#include #include #include #include #include #include #if defined(BOTAN_HAS_RANDPOOL) #include #endif #if defined(BOTAN_HAS_HMAC_RNG) #include #include #include #include #endif #if defined(BOTAN_HAS_X931_RNG) #include #endif #if defined(BOTAN_HAS_AUTO_SEEDING_RNG) #include #endif #include "common.h" using namespace Botan; /* A weird little hack to fit S2K algorithms into the validation suite You probably wouldn't ever want to actually use the S2K algorithms like this, the raw S2K interface is more convenient for actually using them */ class S2K_Filter : public Filter { public: void write(const byte in[], u32bit len) { passphrase += std::string(reinterpret_cast(in), len); } void end_msg() { s2k->change_salt(salt, salt.size()); s2k->set_iterations(iterations); SymmetricKey x = s2k->derive_key(outlen, passphrase); send(x.bits_of()); } S2K_Filter(S2K* algo, const SymmetricKey& s, u32bit o, u32bit i) { s2k = algo; outlen = o; iterations = i; salt = s.bits_of(); } ~S2K_Filter() { delete s2k; } private: std::string passphrase; S2K* s2k; SecureVector salt; u32bit outlen, iterations; }; /* Not too useful generally; just dumps random bits for benchmarking */ class RNG_Filter : public Filter { public: void write(const byte[], u32bit); RNG_Filter(RandomNumberGenerator* r) : rng(r) {} ~RNG_Filter() { delete rng; } private: RandomNumberGenerator* rng; }; class KDF_Filter : public Filter { public: void write(const byte in[], u32bit len) { secret.append(in, len); } void end_msg() { SymmetricKey x = kdf->derive_key(outlen, secret, secret.size(), salt, salt.size()); send(x.bits_of(), x.length()); } KDF_Filter(KDF* algo, const SymmetricKey& s, u32bit o) { kdf = algo; outlen = o; salt = s.bits_of(); } ~KDF_Filter() { delete kdf; } private: SecureVector secret; SecureVector salt; KDF* kdf; u32bit outlen; }; Filter* lookup_s2k(const std::string& algname, const std::vector& params) { S2K* s2k = 0; try { s2k = get_s2k(algname); } catch(...) { } if(s2k) return new S2K_Filter(s2k, params[0], to_u32bit(params[1]), to_u32bit(params[2])); return 0; } void RNG_Filter::write(const byte[], u32bit length) { if(length) { SecureVector out(length); rng->randomize(out, out.size()); send(out); } } Filter* lookup_rng(const std::string& algname, const std::string& key) { RandomNumberGenerator* prng = 0; #if defined(BOTAN_HAS_AUTO_SEEDING_RNG) if(algname == "AutoSeeded") prng = new AutoSeeded_RNG; #endif #if defined(BOTAN_HAS_X931_RNG) if(algname == "X9.31-RNG(TripleDES)") prng = new ANSI_X931_RNG(get_block_cipher("TripleDES"), new Fixed_Output_RNG(decode_hex(key))); else if(algname == "X9.31-RNG(AES-128)") prng = new ANSI_X931_RNG(get_block_cipher("AES-128"), new Fixed_Output_RNG(decode_hex(key))); else if(algname == "X9.31-RNG(AES-192)") prng = new ANSI_X931_RNG(get_block_cipher("AES-192"), new Fixed_Output_RNG(decode_hex(key))); else if(algname == "X9.31-RNG(AES-256)") prng = new ANSI_X931_RNG(get_block_cipher("AES-256"), new Fixed_Output_RNG(decode_hex(key))); #endif #if defined(BOTAN_HAS_RANDPOOL) if(algname == "Randpool") { prng = new Randpool(get_block_cipher("AES-256"), get_mac("HMAC(SHA-256)")); prng->add_entropy(reinterpret_cast(key.c_str()), key.length()); } #endif #if defined(BOTAN_HAS_X931_RNG) // these are used for benchmarking: AES-256/SHA-256 matches library // defaults, so benchmark reflects real-world performance (maybe) if(algname == "X9.31-RNG") { RandomNumberGenerator* hmac_rng = new HMAC_RNG(new HMAC(new SHA_512), new HMAC(new SHA_256)); prng = new ANSI_X931_RNG(get_block_cipher("AES-256"), hmac_rng); } #endif #if defined(BOTAN_HAS_HMAC_RNG) if(algname == "HMAC_RNG") { prng = new HMAC_RNG(new HMAC(new SHA_512), new HMAC(new SHA_256)); } #endif if(prng) { prng->add_entropy(reinterpret_cast(key.c_str()), key.length()); return new RNG_Filter(prng); } return 0; } Filter* lookup_kdf(const std::string& algname, const std::string& salt, const std::string& params) { KDF* kdf = 0; try { kdf = get_kdf(algname); } catch(...) { return 0; } if(kdf) return new KDF_Filter(kdf, salt, to_u32bit(params)); return 0; }