| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
the info.txt files with the right module dependencies.
Apply it across the codebase.
|
|
|
|
|
|
| |
/dev/urandom
/dev/random
/dev/srandom (OpenBSD-specific)
|
|
|
|
|
| |
with the version in earlier releases. Rickard Bondesson pointed out that
this was a problem on the mailing list.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
up during the Fedora submission review, that each source file include some
text about the license. One handy Perl script later and each file now has
the line
Distributed under the terms of the Botan license
after the copyright notices.
While I was in there modifying every file anyway, I also stripped out the
remainder of the block comments (lots of astericks before and after the
text); this is stylistic thing I picked up when I was first learning C++
but in retrospect it is not a good style as the structure makes it harder
to modify comments (with the result that comments become fewer, shorter and
are less likely to be updated, which are not good things).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Combine the fast and slow polls, into a single poll() operation.
Instead of being given a buffer to write output into, the EntropySource is
passed an Entropy_Accumulator. This handles the RLE encoding that xor_into_buf
used to do. It also contains a cached I/O buffer so entropy sources do not
individually need to allocate memory for that with each poll. When data
is added to the accumulator, the source specifies an estimate of the number
of bits of entropy per byte, as a double. This is tracked in the accumulator.
Once the estimated entropy hits a target (set by the constructor), the
accumulator's member function predicate polling_goal_achieved flips to true.
This signals to the PRNG that it can stop performing polling on sources,
also polls that take a long time periodically check this flag and return
immediately.
The Win32 and BeOS entropy sources have been updated, but blindly; testing
is needed.
The test_es example program has been modified: now it polls twice and outputs
the XOR of the two collected results. That helps show if the output is consistent
across polls (not a good thing). I have noticed on the Unix entropy source,
occasionally there are many 0x00 bytes in the output, which is not optimal.
This also needs to be investigated.
The RLE is not actually RLE anymore. It works well for non-random inputs
(ASCII text, etc), but I noticed that when /dev/random output was fed into
it, the output buffer would end up being RR01RR01RR01 where RR is a random
byte and 00 is the byte count.
The buffer sizing also needs to be examined carefully. It might be useful
to choose a prime number for the size to XOR stuff into, to help ensure an
even distribution of entropy across the entire buffer space. Or: feed it
all into a hash function?
This change should (perhaps with further modifications) help WRT the
concerns Zack W raised about the RNG on the monotone-dev list.
|
| |
|
|
|
|
|
|
| |
It turned out many files were including base.h merely to get other
includes (like types.h, secmem.h, and exceptn.h). Those have been changed
to directly include the files containing the declarations that code needs.
|
|
|
|
|
|
|
|
| |
available in the build. If neither is avilable, the constructor will
throw an exception.
As before, the underlying RNG will be wrapped in an X9.31 PRNG using
AES-256 as the block cipher (if X9.31 is enabled in the build).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
is requested, Randpool will first do a fast poll on each entropy
source that has been registered. It will count these poll results
towards the collected entropy count, with a maximum of 96
contributed bits of entropy per poll (only /dev/random reaches
this, others measure at 50-60 bits typically), and a maximum of
256 for sum contribution of the fast polls.
Then it will attempt slow polls of all devices until it thinks enough
entropy has been collected (using the rather naive entropy_estimate
function). It will count any slow poll for no more than 256 bits (100 or
so is typical for every poll but /dev/random), and will attempt to collect
at least 512 bits of (estimated/guessed) entropy.
This tends to cause Randpool to use significantly more
sources. Previously it was common, especially on systems with a
/dev/random, for only one or a few sources to be used. This
change helps assure that even if /dev/random and company are
broken or compromised the RNG output remains secure (assuming at
least some amount of entropy unguessable by the attacker can be
collected via other sources).
Also change AutoSeeded_RNG do an automatic poll/seed when it is
created.
|
|
Add a new class AutoSeeded_RNG that is a RandomNumberGenerator that wraps
up the logic formerly in RandomNumberGenerator::make_rng. make_rng in
fact now just returns a new AutoSeeded_RNG object.
AutoSeeded_RNG is a bit more convenient because
- No need to use auto_ptr
- No need to dereference (same syntax everywhere - it's an underestimated
advantage imo)
Also move the code from timer/timer_base to timer/
|