| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
choose 256 bits unless the pbits was exactly 1024. That would mean you
for pbits = 512/768, the FIPS 186-3 size check would fail and it
wouldn't work. Pointed out by Rickard Bellgrim.
|
| |
|
|
|
|
| |
failed. If so, assume the input string was an OID and try that.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
not useful; in all cases, we immediately caught it and then returned
false.
Modify as follows:
- Create the pubkey objects inside the checking code, so calling code
doesn't need to do it.
- Return true/false for pass/fail
Also add consistency checking for ECDSA keys
|
|
|
|
|
|
|
|
|
|
|
| |
or throw an exception, with PointGFp::on_the_curve, which returns a bool.
Update callers.
This showed several cases where check_invaraints was being called
multiple times, for instance when decoding a point with OS2ECP,
check_invaraints was called; many callers of OS2ECP would then call
check_invaraints again on the same object.
|
|
|
|
|
|
|
|
|
|
| |
decode_and_check takes an expected value; if the decoded value does
not match, a Decoding_Error with a specified string is thrown. Useful
for checking embedded version codes.
decode_octet_string_bigint is for decoding INTEGER values that are
stored as OCTET STRINGs. Totally obnoxious and useless, but common
especially in the ECC standards.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use 64 bit nonces in the Miller-Rabin test, instead of 40 bits.
Rename check_prime to quick_check_prime and is_prime to check_prime
Remove some internal functions which weren't used outside the
primality test code, along with the prime products table.
For quick checking, instead of doing Miller-Rabin with fixed base 2,
do a small number of randomized tests.
Always use random bases instead of the first n primes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PRNG everywhere. The removal of the global PRNG was generated by a
desire to remove the global library state entirely. However the real
point of this was to remove the use of globally visible _mutable_
state; of the mutable state, the PRNG is probably the least important,
and the most useful to share. And it seems unlikely that thread
contention would be a major issue in the PRNG.
Add back a global PRNG to Library_State. Use lazy initialization, so
apps that don't ever use a PRNG don't need a seeding step. Then have
AutoSeeded_RNG call that global PRNG.
Offer once again
RandomNumberGenerator& Library_State::global_rng();
which returns a reference to the global PRNG.
This RNG object serializes access to itself with a mutex.
Remove the hack known as Blinding::choose_nonce, replace with using
the global PRNG to choose a blinding nonce
|
|
|
|
|
|
| |
would like to replace these functions with generic engine code instead
of hardcoded lookup, and NULL return value would be impossible to
disambiguate.
|
|
|
|
|
|
|
|
|
|
|
| |
Generating the test vectors found yet another inane (and, of course,
undocumented) behavior in the GOST implementation included in OpenSSL;
it treats the hash inputs as little endian. Just out of curiousity, I
checked RFC 5832, which supposedly specifies this algorithm; not a
peep about endian conversions.
The more I deal with standards coming out of the CryptoPro people, the
less confidence I have in them.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
choosen nonce) not be 0. Previously it would just check and throw an
exception if this was the case. Change to generate a new nonce and
retry if this happens.
|
| |
|
|
|
|
|
|
|
|
|
| |
However if the group generator is 2, that's precisely the public key,
which is hardly secret at all.
Instead use y^x mod p, which while a little dubious in terms of
mathematical structure is probably OK after being hashed through
SHA-512 with some high resolution timestamps.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
precompute only as needed, or will want to access some other expensive
resource or etc.
Change how the secret for generating blinding is done in cases where a
PRNG isn't available. Use the operations public op to hide the secret,
for instance the seed for a DH blinding variable is 2^x mod p.
Make use of being able to mutate internal structures in the RW signer,
since that does have access to a PRNG, so use it to initialize the
blinder on first call to sign().
|
| |
|
|
|
|
| |
Should help against many forms of fault attacks.
|
| |
|
| |
|
|
|
|
| |
instead of each byte once...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are multiple unsatisfactory elements to the current solution,
as compared to how blinding was previously done:
Firstly, blinding is only used in the baseline implementations; the code
using OpenSSL and GMP is not protected by blinding at all.
Secondly, at the point we need to set up blinding, there is no access
to a PRNG. Currently I am going with a quite nasty solution, of using
a private key parameter to seed a simple PRNG constructed as:
SHA-512(TS1 || private_key_param || public_key_param || TS2)
I really want to fix both of these elements but I'm not sure how to do
so easily.
|
|
|
|
|
| |
PK_Encryptor_EME and PK_Decryptor_EME; the message recovery is somewhat
implicit in the recovery of the plaintext.
|
|
|
|
|
| |
Remove use of look_pk from the source and examples, instead
instantiate classes directly.
|
|
|
|
| |
convert look_pk to simple forwarders.
|
|
|
|
|
| |
PK_Decrypting_Key, PK_Signing_Key, PK_Verifying_with_MR_Key, and
PK_Verifying_wo_MR_Key.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
| |
Note: blinding is not currently being used for RSA, RW, DH or ElGamal,
which used to have them. This should be added back before release.
|
| |
|
| |
|
| |
|
|
|
|
| |
Rename PK_Ops::KA_Operation to PK_Ops::Key_Agreement
|
| |
|
| |
|
|
|
|
|
|
| |
by using the ops.
Add real ECDSA test vectors (two found in ANSI X9.62)
|
|
|
|
|
|
| |
PK_Signing_Key, though for the moment the class remains because there
are a few pieces of code that use it to detect if signatures are
supported, or for passing to functions in look_pk
|
|
|
|
| |
so keep the curve and cofactor in ECDH op by reference instead of value.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
performed. Up until now, each key object (eg DSA_PublicKey or
ECDH_PrivateKey) had two jobs: contain the key material, and know how
to perform any operations on that key. However because of a desire to
support alternative implementations (GNU MP, hardware, whatever),
there was a notion of operations, with the key objects containing an
op that they got via engine rather than actually implementing the
underlying algorithms directly.
Now, represent the operation as an abstract interface (typically
mapping a byte string to a byte string), and pass a plain Public_Key&
or Private_Key& to the engine. The engine does any checks it wants (eg
based on name, typeid, key sizes, etc), and either returns nothing
(I'll pass) or a pointer to a new operation that represents signatures
or encryption or what-have-you using that key.
This means that plain key objects no longer contain operations. This
is a major break with the traditional interface. On the other hand,
using these 'bare' operations without padding, KDFs, etc is 99% of the
time a bad idea anyway (and if you really need them, there are options
so you get the bare op but via the pubkey.h interfaces).
Currently this change is only implemented for DH and ECDH (ie, key
agreement algorithms). Additionally the optional engines (gnump and
openssl) have not been updated. I'll probably wait to touch those
until after I can change them all in one go for all algos.
|
| |
|
| |
|