aboutsummaryrefslogtreecommitdiffstats
path: root/src/math/numbertheory/numthry.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/numbertheory/numthry.h')
-rw-r--r--src/math/numbertheory/numthry.h60
1 files changed, 48 insertions, 12 deletions
diff --git a/src/math/numbertheory/numthry.h b/src/math/numbertheory/numthry.h
index 2d889a68a..146f158b6 100644
--- a/src/math/numbertheory/numthry.h
+++ b/src/math/numbertheory/numthry.h
@@ -14,8 +14,8 @@
namespace Botan {
-/*
-* Fused Arithmetic Operations
+/**
+* Fused Arithmetic Operation
*/
BigInt BOTAN_DLL mul_add(const BigInt&, const BigInt&, const BigInt&);
BigInt BOTAN_DLL sub_mul(const BigInt&, const BigInt&, const BigInt&);
@@ -25,27 +25,63 @@ BigInt BOTAN_DLL sub_mul(const BigInt&, const BigInt&, const BigInt&);
*/
inline BigInt abs(const BigInt& n) { return n.abs(); }
-void BOTAN_DLL divide(const BigInt&, const BigInt&, BigInt&, BigInt&);
-
+/**
+* Compute the greatest common divisor
+* @param x a positive integer
+* @param y a positive integer
+* @return gcd(x,y)
+*/
BigInt BOTAN_DLL gcd(const BigInt& x, const BigInt& y);
+
+/**
+* Least common multiple
+* @param x a positive integer
+* @param y a positive integer
+* @return z, smallest integer such that z % x == 0 and z % y == 0
+*/
BigInt BOTAN_DLL lcm(const BigInt& x, const BigInt& y);
-BigInt BOTAN_DLL square(const BigInt&);
-BigInt BOTAN_DLL inverse_mod(const BigInt&, const BigInt&);
+/**
+* @param x an integer
+* @return (x*x)
+*/
+BigInt BOTAN_DLL square(const BigInt& x);
+
+/**
+* Modular inversion
+* @param x a positive integer
+* @param modulus a positive integer
+* @return y st (x*y) % modulus == 1
+*/
+BigInt BOTAN_DLL inverse_mod(const BigInt& x,
+ const BigInt& modulus);
+
+/**
+* Jacobi function
+*/
s32bit BOTAN_DLL jacobi(const BigInt&, const BigInt&);
+/**
+* Modular exponentation
+*/
BigInt BOTAN_DLL power_mod(const BigInt&, const BigInt&, const BigInt&);
-/*
-* Compute the square root of x modulo a prime
-* using the Shanks-Tonnelli algorithm
+/**
+* Compute the square root of x modulo a prime using the
+* Shanks-Tonnelli algorithm
+*
+* @param x the input
+* @param p the prime
+* @return y such that (y*y)%p == x, or -1 if no such integer
*/
BigInt BOTAN_DLL ressol(const BigInt& x, const BigInt& p);
-/*
-* Utility Functions
+/**
+* @param x an integer
+* @return count of the zero bits in x, or, equivalently, the largest
+* value of n such that 2^n divides x evently
*/
-u32bit BOTAN_DLL low_zero_bits(const BigInt&);
+u32bit BOTAN_DLL low_zero_bits(const BigInt& x);
/*
* Primality Testing