diff options
Diffstat (limited to 'src/math/numbertheory/numthry.cpp')
-rw-r--r-- | src/math/numbertheory/numthry.cpp | 409 |
1 files changed, 0 insertions, 409 deletions
diff --git a/src/math/numbertheory/numthry.cpp b/src/math/numbertheory/numthry.cpp deleted file mode 100644 index e3c673ea5..000000000 --- a/src/math/numbertheory/numthry.cpp +++ /dev/null @@ -1,409 +0,0 @@ -/* -* Number Theory Functions -* (C) 1999-2011 Jack Lloyd -* -* Distributed under the terms of the Botan license -*/ - -#include <botan/numthry.h> -#include <botan/reducer.h> -#include <botan/internal/bit_ops.h> -#include <botan/internal/mp_core.h> -#include <algorithm> - -namespace Botan { - -namespace { - -/* -* Miller-Rabin Primality Tester -*/ -class MillerRabin_Test - { - public: - bool is_witness(const BigInt& nonce); - MillerRabin_Test(const BigInt& num); - private: - BigInt n, r, n_minus_1; - size_t s; - Fixed_Exponent_Power_Mod pow_mod; - Modular_Reducer reducer; - }; - -/* -* Miller-Rabin Test, as described in Handbook of Applied Cryptography -* section 4.24 -*/ -bool MillerRabin_Test::is_witness(const BigInt& a) - { - if(a < 2 || a >= n_minus_1) - throw Invalid_Argument("Bad size for nonce in Miller-Rabin test"); - - BigInt y = pow_mod(a); - if(y == 1 || y == n_minus_1) - return false; - - for(size_t i = 1; i != s; ++i) - { - y = reducer.square(y); - - if(y == 1) // found a non-trivial square root - return true; - - if(y == n_minus_1) // -1, trivial square root, so give up - return false; - } - - if(y != n_minus_1) // fails Fermat test - return true; - - return false; - } - -/* -* Miller-Rabin Constructor -*/ -MillerRabin_Test::MillerRabin_Test(const BigInt& num) - { - if(num.is_even() || num < 3) - throw Invalid_Argument("MillerRabin_Test: Invalid number for testing"); - - n = num; - n_minus_1 = n - 1; - s = low_zero_bits(n_minus_1); - r = n_minus_1 >> s; - - pow_mod = Fixed_Exponent_Power_Mod(r, n); - reducer = Modular_Reducer(n); - } - -/* -* Miller-Rabin Iterations -*/ -size_t miller_rabin_test_iterations(size_t bits, size_t level) - { - struct mapping { size_t bits; size_t verify_iter; size_t check_iter; }; - - const mapping tests[] = { - { 50, 55, 25 }, - { 100, 38, 22 }, - { 160, 32, 18 }, - { 163, 31, 17 }, - { 168, 30, 16 }, - { 177, 29, 16 }, - { 181, 28, 15 }, - { 185, 27, 15 }, - { 190, 26, 15 }, - { 195, 25, 14 }, - { 201, 24, 14 }, - { 208, 23, 14 }, - { 215, 22, 13 }, - { 222, 21, 13 }, - { 231, 20, 13 }, - { 241, 19, 12 }, - { 252, 18, 12 }, - { 264, 17, 12 }, - { 278, 16, 11 }, - { 294, 15, 10 }, - { 313, 14, 9 }, - { 334, 13, 8 }, - { 360, 12, 8 }, - { 392, 11, 7 }, - { 430, 10, 7 }, - { 479, 9, 6 }, - { 542, 8, 6 }, - { 626, 7, 5 }, - { 746, 6, 4 }, - { 926, 5, 3 }, - { 1232, 4, 2 }, - { 1853, 3, 2 }, - { 0, 0, 0 } - }; - - for(size_t i = 0; tests[i].bits; ++i) - { - if(bits <= tests[i].bits) - { - if(level >= 2) - return tests[i].verify_iter; - else if(level == 1) - return tests[i].check_iter; - else if(level == 0) - return std::max<size_t>(tests[i].check_iter / 4, 1); - } - } - - return level > 0 ? 2 : 1; // for large inputs - } - -} - -/* -* Return the number of 0 bits at the end of n -*/ -size_t low_zero_bits(const BigInt& n) - { - size_t low_zero = 0; - - if(n.is_positive() && n.is_nonzero()) - { - for(size_t i = 0; i != n.size(); ++i) - { - const word x = n.word_at(i); - - if(x) - { - low_zero += ctz(x); - break; - } - else - low_zero += BOTAN_MP_WORD_BITS; - } - } - - return low_zero; - } - -/* -* Calculate the GCD -*/ -BigInt gcd(const BigInt& a, const BigInt& b) - { - if(a.is_zero() || b.is_zero()) return 0; - if(a == 1 || b == 1) return 1; - - BigInt x = a, y = b; - x.set_sign(BigInt::Positive); - y.set_sign(BigInt::Positive); - size_t shift = std::min(low_zero_bits(x), low_zero_bits(y)); - - x >>= shift; - y >>= shift; - - while(x.is_nonzero()) - { - x >>= low_zero_bits(x); - y >>= low_zero_bits(y); - if(x >= y) { x -= y; x >>= 1; } - else { y -= x; y >>= 1; } - } - - return (y << shift); - } - -/* -* Calculate the LCM -*/ -BigInt lcm(const BigInt& a, const BigInt& b) - { - return ((a * b) / gcd(a, b)); - } - -namespace { - -/* -* If the modulus is odd, then we can avoid computing A and C. This is -* a critical path algorithm in some instances and an odd modulus is -* the common case for crypto, so worth special casing. See note 14.64 -* in Handbook of Applied Cryptography for more details. -*/ -BigInt inverse_mod_odd_modulus(const BigInt& n, const BigInt& mod) - { - BigInt u = mod, v = n; - BigInt B = 0, D = 1; - - while(u.is_nonzero()) - { - const size_t u_zero_bits = low_zero_bits(u); - u >>= u_zero_bits; - for(size_t i = 0; i != u_zero_bits; ++i) - { - if(B.is_odd()) - { B -= mod; } - B >>= 1; - } - - const size_t v_zero_bits = low_zero_bits(v); - v >>= v_zero_bits; - for(size_t i = 0; i != v_zero_bits; ++i) - { - if(D.is_odd()) - { D -= mod; } - D >>= 1; - } - - if(u >= v) { u -= v; B -= D; } - else { v -= u; D -= B; } - } - - if(v != 1) - return 0; // no modular inverse - - while(D.is_negative()) D += mod; - while(D >= mod) D -= mod; - - return D; - } - -} - -/* -* Find the Modular Inverse -*/ -BigInt inverse_mod(const BigInt& n, const BigInt& mod) - { - if(mod.is_zero()) - throw BigInt::DivideByZero(); - if(mod.is_negative() || n.is_negative()) - throw Invalid_Argument("inverse_mod: arguments must be non-negative"); - - if(n.is_zero() || (n.is_even() && mod.is_even())) - return 0; // fast fail checks - - if(mod.is_odd()) - return inverse_mod_odd_modulus(n, mod); - - BigInt u = mod, v = n; - BigInt A = 1, B = 0, C = 0, D = 1; - - while(u.is_nonzero()) - { - const size_t u_zero_bits = low_zero_bits(u); - u >>= u_zero_bits; - for(size_t i = 0; i != u_zero_bits; ++i) - { - if(A.is_odd() || B.is_odd()) - { A += n; B -= mod; } - A >>= 1; B >>= 1; - } - - const size_t v_zero_bits = low_zero_bits(v); - v >>= v_zero_bits; - for(size_t i = 0; i != v_zero_bits; ++i) - { - if(C.is_odd() || D.is_odd()) - { C += n; D -= mod; } - C >>= 1; D >>= 1; - } - - if(u >= v) { u -= v; A -= C; B -= D; } - else { v -= u; C -= A; D -= B; } - } - - if(v != 1) - return 0; // no modular inverse - - while(D.is_negative()) D += mod; - while(D >= mod) D -= mod; - - return D; - } - -word monty_inverse(word input) - { - word b = input; - word x2 = 1, x1 = 0, y2 = 0, y1 = 1; - - // First iteration, a = n+1 - word q = bigint_divop(1, 0, b); - word r = (MP_WORD_MAX - q*b) + 1; - word x = x2 - q*x1; - word y = y2 - q*y1; - - word a = b; - b = r; - x2 = x1; - x1 = x; - y2 = y1; - y1 = y; - - while(b > 0) - { - q = a / b; - r = a - q*b; - x = x2 - q*x1; - y = y2 - q*y1; - - a = b; - b = r; - x2 = x1; - x1 = x; - y2 = y1; - y1 = y; - } - - // Now invert in addition space - y2 = (MP_WORD_MAX - y2) + 1; - - return y2; - } - -/* -* Modular Exponentiation -*/ -BigInt power_mod(const BigInt& base, const BigInt& exp, const BigInt& mod) - { - Power_Mod pow_mod(mod); - - /* - * Calling set_base before set_exponent means we end up using a - * minimal window. This makes sense given that here we know that any - * precomputation is wasted. - */ - pow_mod.set_base(base); - pow_mod.set_exponent(exp); - return pow_mod.execute(); - } - -/* -* Test for primaility using Miller-Rabin -*/ -bool primality_test(const BigInt& n, - RandomNumberGenerator& rng, - size_t level) - { - if(n == 2) - return true; - if(n <= 1 || n.is_even()) - return false; - - // Fast path testing for small numbers (<= 65521) - if(n <= PRIMES[PRIME_TABLE_SIZE-1]) - { - const word num = n.word_at(0); - - for(size_t i = 0; PRIMES[i]; ++i) - { - if(num == PRIMES[i]) - return true; - if(num < PRIMES[i]) - return false; - } - - return false; - } - - if(level > 2) - level = 2; - - const size_t PREF_NONCE_BITS = 192; - - const size_t NONCE_BITS = std::min(n.bits() - 2, PREF_NONCE_BITS); - - MillerRabin_Test mr(n); - - const size_t tests = miller_rabin_test_iterations(n.bits(), level); - - BigInt nonce; - for(size_t i = 0; i != tests; ++i) - { - while(nonce < 2 || nonce >= (n-1)) - nonce.randomize(rng, NONCE_BITS); - - if(mr.is_witness(nonce)) - return false; - } - return true; - } - -} |