aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib')
-rw-r--r--src/lib/pubkey/curve25519/donna.cpp821
-rw-r--r--src/lib/utils/donna128.h4
2 files changed, 414 insertions, 411 deletions
diff --git a/src/lib/pubkey/curve25519/donna.cpp b/src/lib/pubkey/curve25519/donna.cpp
index 6807d56f6..4305ea143 100644
--- a/src/lib/pubkey/curve25519/donna.cpp
+++ b/src/lib/pubkey/curve25519/donna.cpp
@@ -1,462 +1,465 @@
/*
-* curve25519-donna-c64.c from github.com/agl/curve25519-donna
+* Based on curve25519-donna-c64.c from github.com/agl/curve25519-donna
* revision 80ad9b9930c9baef5829dd2a235b6b7646d32a8e
+*
+* Further changes
+* (C) 2014,2018 Jack Lloyd
+*
+* Botan is released under the Simplified BSD License (see license.txt)
*/
/* Copyright 2008, Google Inc.
- * All rights reserved.
- *
- * Code released into the public domain.
- *
- * curve25519-donna: Curve25519 elliptic curve, public key function
- *
- * https://code.google.com/p/curve25519-donna/
- *
- * Adam Langley <[email protected]>
- *
- * Derived from public domain C code by Daniel J. Bernstein <[email protected]>
- *
- * More information about curve25519 can be found here
- * https://cr.yp.to/ecdh.html
- *
- * djb's sample implementation of curve25519 is written in a special assembly
- * language called qhasm and uses the floating point registers.
- *
- * This is, almost, a clean room reimplementation from the curve25519 paper. It
- * uses many of the tricks described therein. Only the crecip function is taken
- * from the sample implementation.
- */
+* All rights reserved.
+*
+* Code released into the public domain.
+*
+* curve25519-donna: Curve25519 elliptic curve, public key function
+*
+* https://code.google.com/p/curve25519-donna/
+*
+* Adam Langley <[email protected]>
+*
+* Derived from public domain C code by Daniel J. Bernstein <[email protected]>
+*
+* More information about curve25519 can be found here
+* https://cr.yp.to/ecdh.html
+*
+* djb's sample implementation of curve25519 is written in a special assembly
+* language called qhasm and uses the floating point registers.
+*
+* This is, almost, a clean room reimplementation from the curve25519 paper. It
+* uses many of the tricks described therein. Only the crecip function is taken
+* from the sample implementation.
+*/
#include <botan/curve25519.h>
#include <botan/mul128.h>
-#include <botan/internal/donna128.h>
#include <botan/internal/ct_utils.h>
+#include <botan/internal/donna128.h>
#include <botan/loadstor.h>
namespace Botan {
-typedef uint8_t u8;
-typedef uint64_t limb;
-typedef limb felem[5];
-
-typedef struct
- {
- limb* x;
- limb* z;
- } fmonty_pair_t;
-
-typedef struct
- {
- fmonty_pair_t q;
- fmonty_pair_t q_dash;
- const limb* q_minus_q_dash;
- } fmonty_in_t;
-
-typedef struct
- {
- fmonty_pair_t two_q;
- fmonty_pair_t q_plus_q_dash;
- } fmonty_out_t;
-
+namespace {
#if !defined(BOTAN_TARGET_HAS_NATIVE_UINT128)
typedef donna128 uint128_t;
#endif
-/* Sum two numbers: output += in */
-static inline void
-fsum(limb *output, const limb *in) {
- output[0] += in[0];
- output[1] += in[1];
- output[2] += in[2];
- output[3] += in[3];
- output[4] += in[4];
-}
-
-/* Find the difference of two numbers: output = in - output
- * (note the order of the arguments!)
- *
- * Assumes that out[i] < 2**52
- * On return, out[i] < 2**55
- */
-static inline void
-fdifference_backwards(felem out, const felem in) {
- /* 152 is 19 << 3 */
- static const limb two54m152 = (static_cast<limb>(1) << 54) - 152;
- static const limb two54m8 = (static_cast<limb>(1) << 54) - 8;
-
- out[0] = in[0] + two54m152 - out[0];
- out[1] = in[1] + two54m8 - out[1];
- out[2] = in[2] + two54m8 - out[2];
- out[3] = in[3] + two54m8 - out[3];
- out[4] = in[4] + two54m8 - out[4];
-}
-
-/* Multiply a number by a scalar: output = in * scalar */
-static inline void
-fscalar_product(felem output, const felem in, const limb scalar) {
- uint128_t a = uint128_t(in[0]) * scalar;
- output[0] = a & 0x7ffffffffffff;
+struct fmonty_pair_t
+ {
+ uint64_t* x;
+ uint64_t* z;
+ };
- a = uint128_t(in[1]) * scalar + carry_shift(a, 51);
- output[1] = a & 0x7ffffffffffff;
+struct fmonty_in_t
+ {
+ fmonty_pair_t q;
+ fmonty_pair_t q_dash;
+ const uint64_t* q_minus_q_dash;
+ };
- a = uint128_t(in[2]) * scalar + carry_shift(a, 51);
- output[2] = a & 0x7ffffffffffff;
+struct fmonty_out_t
+ {
+ fmonty_pair_t two_q;
+ fmonty_pair_t q_plus_q_dash;
+ };
- a = uint128_t(in[3]) * scalar + carry_shift(a, 51);
- output[3] = a & 0x7ffffffffffff;
+/* Sum two numbers: output += in */
+inline void fsum(uint64_t out[5], const uint64_t in[5])
+ {
+ out[0] += in[0];
+ out[1] += in[1];
+ out[2] += in[2];
+ out[3] += in[3];
+ out[4] += in[4];
+ }
+
+/* Find the difference of two numbers: out = in - out
+* (note the order of the arguments!)
+*
+* Assumes that out[i] < 2**52
+* On return, out[i] < 2**55
+*/
+inline void fdifference_backwards(uint64_t out[5], const uint64_t in[5])
+ {
+ /* 152 is 19 << 3 */
+ const uint64_t two54m152 = (static_cast<uint64_t>(1) << 54) - 152;
+ const uint64_t two54m8 = (static_cast<uint64_t>(1) << 54) - 8;
+
+ out[0] = in[0] + two54m152 - out[0];
+ out[1] = in[1] + two54m8 - out[1];
+ out[2] = in[2] + two54m8 - out[2];
+ out[3] = in[3] + two54m8 - out[3];
+ out[4] = in[4] + two54m8 - out[4];
+ }
+
+/* Multiply a number by a scalar: out = in * scalar */
+inline void fscalar_product(uint64_t out[5], const uint64_t in[5], const uint64_t scalar)
+ {
+ uint128_t a = uint128_t(in[0]) * scalar;
+ out[0] = a & 0x7ffffffffffff;
- a = uint128_t(in[4]) * scalar + carry_shift(a, 51);
- output[4] = a & 0x7ffffffffffff;
+ a = uint128_t(in[1]) * scalar + carry_shift(a, 51);
+ out[1] = a & 0x7ffffffffffff;
- output[0] += carry_shift(a, 51) * 19;
-}
+ a = uint128_t(in[2]) * scalar + carry_shift(a, 51);
+ out[2] = a & 0x7ffffffffffff;
-/* Multiply two numbers: output = in2 * in
- *
- * output must be distinct to both inputs. The inputs are reduced coefficient
- * form, the output is not.
- *
- * Assumes that in[i] < 2**55 and likewise for in2.
- * On return, output[i] < 2**52
- */
-static inline void
-fmul(felem output, const felem in2, const felem in) {
- uint128_t t[5];
- limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
-
- r0 = in[0];
- r1 = in[1];
- r2 = in[2];
- r3 = in[3];
- r4 = in[4];
-
- s0 = in2[0];
- s1 = in2[1];
- s2 = in2[2];
- s3 = in2[3];
- s4 = in2[4];
-
- t[0] = uint128_t(r0) * s0;
- t[1] = uint128_t(r0) * s1 + uint128_t(r1) * s0;
- t[2] = uint128_t(r0) * s2 + uint128_t(r2) * s0 + uint128_t(r1) * s1;
- t[3] = uint128_t(r0) * s3 + uint128_t(r3) * s0 + uint128_t(r1) * s2 + uint128_t(r2) * s1;
- t[4] = uint128_t(r0) * s4 + uint128_t(r4) * s0 + uint128_t(r3) * s1 + uint128_t(r1) * s3 + uint128_t(r2) * s2;
-
- r4 *= 19;
- r1 *= 19;
- r2 *= 19;
- r3 *= 19;
-
- t[0] += uint128_t(r4) * s1 + uint128_t(r1) * s4 + uint128_t(r2) * s3 + uint128_t(r3) * s2;
- t[1] += uint128_t(r4) * s2 + uint128_t(r2) * s4 + uint128_t(r3) * s3;
- t[2] += uint128_t(r4) * s3 + uint128_t(r3) * s4;
- t[3] += uint128_t(r4) * s4;
-
- r0 = t[0] & 0x7ffffffffffff; c = carry_shift(t[0], 51);
- t[1] += c; r1 = t[1] & 0x7ffffffffffff; c = carry_shift(t[1], 51);
- t[2] += c; r2 = t[2] & 0x7ffffffffffff; c = carry_shift(t[2], 51);
- t[3] += c; r3 = t[3] & 0x7ffffffffffff; c = carry_shift(t[3], 51);
- t[4] += c; r4 = t[4] & 0x7ffffffffffff; c = carry_shift(t[4], 51);
- r0 += c * 19; c = carry_shift(r0, 51); r0 = r0 & 0x7ffffffffffff;
- r1 += c; c = carry_shift(r1, 51); r1 = r1 & 0x7ffffffffffff;
- r2 += c;
-
- output[0] = r0;
- output[1] = r1;
- output[2] = r2;
- output[3] = r3;
- output[4] = r4;
-}
+ a = uint128_t(in[3]) * scalar + carry_shift(a, 51);
+ out[3] = a & 0x7ffffffffffff;
-static inline void fsquare_times(felem output, const felem in, limb count) {
- uint128_t t[5];
- limb r0,r1,r2,r3,r4,c;
- limb d0,d1,d2,d4,d419;
-
- r0 = in[0];
- r1 = in[1];
- r2 = in[2];
- r3 = in[3];
- r4 = in[4];
-
- do {
- d0 = r0 * 2;
- d1 = r1 * 2;
- d2 = r2 * 2 * 19;
- d419 = r4 * 19;
- d4 = d419 * 2;
-
- t[0] = uint128_t(r0) * r0 + uint128_t(d4) * r1 + uint128_t(d2) * (r3 );
- t[1] = uint128_t(d0) * r1 + uint128_t(d4) * r2 + uint128_t(r3) * (r3 * 19);
- t[2] = uint128_t(d0) * r2 + uint128_t(r1) * r1 + uint128_t(d4) * (r3 );
- t[3] = uint128_t(d0) * r3 + uint128_t(d1) * r2 + uint128_t(r4) * (d419 );
- t[4] = uint128_t(d0) * r4 + uint128_t(d1) * r3 + uint128_t(r2) * (r2 );
-
- r0 = t[0] & 0x7ffffffffffff; c = carry_shift(t[0], 51);
- t[1] += c; r1 = t[1] & 0x7ffffffffffff; c = carry_shift(t[1], 51);
- t[2] += c; r2 = t[2] & 0x7ffffffffffff; c = carry_shift(t[2], 51);
- t[3] += c; r3 = t[3] & 0x7ffffffffffff; c = carry_shift(t[3], 51);
- t[4] += c; r4 = t[4] & 0x7ffffffffffff; c = carry_shift(t[4], 51);
- r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
- r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
- r2 += c;
- } while(--count);
-
- output[0] = r0;
- output[1] = r1;
- output[2] = r2;
- output[3] = r3;
- output[4] = r4;
-}
+ a = uint128_t(in[4]) * scalar + carry_shift(a, 51);
+ out[4] = a & 0x7ffffffffffff;
-/* Load a little-endian 64-bit number */
-static limb
-load_limb(const u8 *in) {
- return load_le<uint64_t>(in, 0);
-}
+ out[0] += carry_shift(a, 51) * 19;
+ }
-static void
-store_limb(u8 *out, limb in) {
- store_le(in, out);
-}
+/* Multiply two numbers: out = in2 * in
+*
+* out must be distinct to both inputs. The inputs are reduced coefficient
+* form, the out is not.
+*
+* Assumes that in[i] < 2**55 and likewise for in2.
+* On return, out[i] < 2**52
+*/
+inline void fmul(uint64_t out[5], const uint64_t in2[5], const uint64_t in[5])
+ {
+ uint128_t t[5];
+ uint64_t r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
+
+ r0 = in[0];
+ r1 = in[1];
+ r2 = in[2];
+ r3 = in[3];
+ r4 = in[4];
+
+ s0 = in2[0];
+ s1 = in2[1];
+ s2 = in2[2];
+ s3 = in2[3];
+ s4 = in2[4];
+
+ t[0] = uint128_t(r0) * s0;
+ t[1] = uint128_t(r0) * s1 + uint128_t(r1) * s0;
+ t[2] = uint128_t(r0) * s2 + uint128_t(r2) * s0 + uint128_t(r1) * s1;
+ t[3] = uint128_t(r0) * s3 + uint128_t(r3) * s0 + uint128_t(r1) * s2 + uint128_t(r2) * s1;
+ t[4] = uint128_t(r0) * s4 + uint128_t(r4) * s0 + uint128_t(r3) * s1 + uint128_t(r1) * s3 + uint128_t(r2) * s2;
+
+ r4 *= 19;
+ r1 *= 19;
+ r2 *= 19;
+ r3 *= 19;
+
+ t[0] += uint128_t(r4) * s1 + uint128_t(r1) * s4 + uint128_t(r2) * s3 + uint128_t(r3) * s2;
+ t[1] += uint128_t(r4) * s2 + uint128_t(r2) * s4 + uint128_t(r3) * s3;
+ t[2] += uint128_t(r4) * s3 + uint128_t(r3) * s4;
+ t[3] += uint128_t(r4) * s4;
+
+ r0 = t[0] & 0x7ffffffffffff; c = carry_shift(t[0], 51);
+ t[1] += c; r1 = t[1] & 0x7ffffffffffff; c = carry_shift(t[1], 51);
+ t[2] += c; r2 = t[2] & 0x7ffffffffffff; c = carry_shift(t[2], 51);
+ t[3] += c; r3 = t[3] & 0x7ffffffffffff; c = carry_shift(t[3], 51);
+ t[4] += c; r4 = t[4] & 0x7ffffffffffff; c = carry_shift(t[4], 51);
+ r0 += c * 19; c = carry_shift(r0, 51); r0 = r0 & 0x7ffffffffffff;
+ r1 += c; c = carry_shift(r1, 51); r1 = r1 & 0x7ffffffffffff;
+ r2 += c;
+
+ out[0] = r0;
+ out[1] = r1;
+ out[2] = r2;
+ out[3] = r3;
+ out[4] = r4;
+ }
+
+inline void fsquare_times(uint64_t out[5], const uint64_t in[5], size_t count)
+ {
+ uint64_t r0 = in[0];
+ uint64_t r1 = in[1];
+ uint64_t r2 = in[2];
+ uint64_t r3 = in[3];
+ uint64_t r4 = in[4];
+
+ for(size_t i = 0; i != count; ++i)
+ {
+ const uint64_t d0 = r0 * 2;
+ const uint64_t d1 = r1 * 2;
+ const uint64_t d2 = r2 * 2 * 19;
+ const uint64_t d419 = r4 * 19;
+ const uint64_t d4 = d419 * 2;
+
+ uint128_t t0 = uint128_t(r0) * r0 + uint128_t(d4) * r1 + uint128_t(d2) * (r3 );
+ uint128_t t1 = uint128_t(d0) * r1 + uint128_t(d4) * r2 + uint128_t(r3) * (r3 * 19);
+ uint128_t t2 = uint128_t(d0) * r2 + uint128_t(r1) * r1 + uint128_t(d4) * (r3 );
+ uint128_t t3 = uint128_t(d0) * r3 + uint128_t(d1) * r2 + uint128_t(r4) * (d419 );
+ uint128_t t4 = uint128_t(d0) * r4 + uint128_t(d1) * r3 + uint128_t(r2) * (r2 );
+
+ r0 = t0 & 0x7ffffffffffff; t1 += carry_shift(t0, 51);
+ r1 = t1 & 0x7ffffffffffff; t2 += carry_shift(t1, 51);
+ r2 = t2 & 0x7ffffffffffff; t3 += carry_shift(t2, 51);
+ r3 = t3 & 0x7ffffffffffff; t4 += carry_shift(t3, 51);
+ r4 = t4 & 0x7ffffffffffff;
+
+ uint64_t c = carry_shift(t4, 51);
+
+ r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
+ r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
+ r2 += c;
+ }
+
+ out[0] = r0;
+ out[1] = r1;
+ out[2] = r2;
+ out[3] = r3;
+ out[4] = r4;
+ }
/* Take a little-endian, 32-byte number and expand it into polynomial form */
-static void
-fexpand(limb *output, const u8 *in) {
- output[0] = load_limb(in) & 0x7ffffffffffff;
- output[1] = (load_limb(in+6) >> 3) & 0x7ffffffffffff;
- output[2] = (load_limb(in+12) >> 6) & 0x7ffffffffffff;
- output[3] = (load_limb(in+19) >> 1) & 0x7ffffffffffff;
- output[4] = (load_limb(in+24) >> 12) & 0x7ffffffffffff;
-}
+inline void fexpand(uint64_t *out, const uint8_t *in)
+ {
+ out[0] = load_le<uint64_t>(in, 0) & 0x7ffffffffffff;
+ out[1] = (load_le<uint64_t>(in+6, 0) >> 3) & 0x7ffffffffffff;
+ out[2] = (load_le<uint64_t>(in+12, 0) >> 6) & 0x7ffffffffffff;
+ out[3] = (load_le<uint64_t>(in+19, 0) >> 1) & 0x7ffffffffffff;
+ out[4] = (load_le<uint64_t>(in+24, 0) >> 12) & 0x7ffffffffffff;
+ }
/* Take a fully reduced polynomial form number and contract it into a
- * little-endian, 32-byte array
- */
-static void
-fcontract(u8 *output, const felem input) {
- uint128_t t[5];
-
- t[0] = input[0];
- t[1] = input[1];
- t[2] = input[2];
- t[3] = input[3];
- t[4] = input[4];
-
- t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
- t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
- t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
- t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
- t[0] += (t[4] >> 51) * 19; t[4] &= 0x7ffffffffffff;
-
- t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
- t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
- t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
- t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
- t[0] += (t[4] >> 51) * 19; t[4] &= 0x7ffffffffffff;
-
- /* now t is between 0 and 2^255-1, properly carried. */
- /* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */
-
- t[0] += 19;
-
- t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
- t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
- t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
- t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
- t[0] += (t[4] >> 51) * 19; t[4] &= 0x7ffffffffffff;
-
- /* now between 19 and 2^255-1 in both cases, and offset by 19. */
-
- t[0] += 0x8000000000000 - 19;
- t[1] += 0x8000000000000 - 1;
- t[2] += 0x8000000000000 - 1;
- t[3] += 0x8000000000000 - 1;
- t[4] += 0x8000000000000 - 1;
-
- /* now between 2^255 and 2^256-20, and offset by 2^255. */
-
- t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
- t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
- t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
- t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
- t[4] &= 0x7ffffffffffff;
-
- store_limb(output, combine_lower(t[0], 0, t[1], 51));
- store_limb(output+8, combine_lower(t[1], 13, t[2], 38));
- store_limb(output+16, combine_lower(t[2], 26, t[3], 25));
- store_limb(output+24, combine_lower(t[3], 39, t[4], 12));
-}
+* little-endian, 32-byte array
+*/
+inline void fcontract(uint8_t *out, const uint64_t input[5])
+ {
+ uint128_t t0 = input[0];
+ uint128_t t1 = input[1];
+ uint128_t t2 = input[2];
+ uint128_t t3 = input[3];
+ uint128_t t4 = input[4];
+
+ t1 += t0 >> 51; t0 &= 0x7ffffffffffff;
+ t2 += t1 >> 51; t1 &= 0x7ffffffffffff;
+ t3 += t2 >> 51; t2 &= 0x7ffffffffffff;
+ t4 += t3 >> 51; t3 &= 0x7ffffffffffff;
+ t0 += (t4 >> 51) * 19; t4 &= 0x7ffffffffffff;
+
+ t1 += t0 >> 51; t0 &= 0x7ffffffffffff;
+ t2 += t1 >> 51; t1 &= 0x7ffffffffffff;
+ t3 += t2 >> 51; t2 &= 0x7ffffffffffff;
+ t4 += t3 >> 51; t3 &= 0x7ffffffffffff;
+ t0 += (t4 >> 51) * 19; t4 &= 0x7ffffffffffff;
+
+ /* now t is between 0 and 2^255-1, properly carried. */
+ /* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */
+
+ t0 += 19;
+
+ t1 += t0 >> 51; t0 &= 0x7ffffffffffff;
+ t2 += t1 >> 51; t1 &= 0x7ffffffffffff;
+ t3 += t2 >> 51; t2 &= 0x7ffffffffffff;
+ t4 += t3 >> 51; t3 &= 0x7ffffffffffff;
+ t0 += (t4 >> 51) * 19; t4 &= 0x7ffffffffffff;
+
+ /* now between 19 and 2^255-1 in both cases, and offset by 19. */
+
+ t0 += 0x8000000000000 - 19;
+ t1 += 0x8000000000000 - 1;
+ t2 += 0x8000000000000 - 1;
+ t3 += 0x8000000000000 - 1;
+ t4 += 0x8000000000000 - 1;
+
+ /* now between 2^255 and 2^256-20, and offset by 2^255. */
+
+ t1 += t0 >> 51; t0 &= 0x7ffffffffffff;
+ t2 += t1 >> 51; t1 &= 0x7ffffffffffff;
+ t3 += t2 >> 51; t2 &= 0x7ffffffffffff;
+ t4 += t3 >> 51; t3 &= 0x7ffffffffffff;
+ t4 &= 0x7ffffffffffff;
+
+ store_le(out,
+ combine_lower(t0, 0, t1, 51),
+ combine_lower(t1, 13, t2, 38),
+ combine_lower(t2, 26, t3, 25),
+ combine_lower(t3, 39, t4, 12));
+ }
/* Input: Q, Q', Q-Q'
- * Output: 2Q, Q+Q'
- *
- * result.two_q (2*Q): long form
- * result.q_plus_q_dash (Q + Q): long form
- * in.q: short form, destroyed
- * in.q_dash: short form, destroyed
- * in.q_minus_q_dash: short form, preserved
- */
-static void
+* Out: 2Q, Q+Q'
+*
+* result.two_q (2*Q): long form
+* result.q_plus_q_dash (Q + Q): long form
+* in.q: short form, destroyed
+* in.q_dash: short form, destroyed
+* in.q_minus_q_dash: short form, preserved
+*/
+void
fmonty(fmonty_out_t& result, fmonty_in_t& in)
-{
- limb origx[5], origxprime[5], zzz[5], xx[5], zz[5], xxprime[5],
- zzprime[5], zzzprime[5];
-
- copy_mem(origx, in.q.x, 5);
- fsum(in.q.x, in.q.z);
- fdifference_backwards(in.q.z, origx); // does x - z
-
- copy_mem(origxprime, in.q_dash.x, 5);
- fsum(in.q_dash.x, in.q_dash.z);
- fdifference_backwards(in.q_dash.z, origxprime);
- fmul(xxprime, in.q_dash.x, in.q.z);
- fmul(zzprime, in.q.x, in.q_dash.z);
- copy_mem(origxprime, xxprime, 5);
- fsum(xxprime, zzprime);
- fdifference_backwards(zzprime, origxprime);
- fsquare_times(result.q_plus_q_dash.x, xxprime, 1);
- fsquare_times(zzzprime, zzprime, 1);
- fmul(result.q_plus_q_dash.z, zzzprime, in.q_minus_q_dash);
-
- fsquare_times(xx, in.q.x, 1);
- fsquare_times(zz, in.q.z, 1);
- fmul(result.two_q.x, xx, zz);
- fdifference_backwards(zz, xx); // does zz = xx - zz
- fscalar_product(zzz, zz, 121665);
- fsum(zzz, xx);
- fmul(result.two_q.z, zz, zzz);
-}
+ {
+ uint64_t origx[5];
+ uint64_t origxprime[5];
+ uint64_t zzz[5];
+ uint64_t xx[5];
+ uint64_t zz[5];
+ uint64_t xxprime[5];
+ uint64_t zzprime[5];
+ uint64_t zzzprime[5];
+
+ copy_mem(origx, in.q.x, 5);
+ fsum(in.q.x, in.q.z);
+ fdifference_backwards(in.q.z, origx); // does x - z
+
+ copy_mem(origxprime, in.q_dash.x, 5);
+ fsum(in.q_dash.x, in.q_dash.z);
+ fdifference_backwards(in.q_dash.z, origxprime);
+ fmul(xxprime, in.q_dash.x, in.q.z);
+ fmul(zzprime, in.q.x, in.q_dash.z);
+ copy_mem(origxprime, xxprime, 5);
+ fsum(xxprime, zzprime);
+ fdifference_backwards(zzprime, origxprime);
+ fsquare_times(result.q_plus_q_dash.x, xxprime, 1);
+ fsquare_times(zzzprime, zzprime, 1);
+ fmul(result.q_plus_q_dash.z, zzzprime, in.q_minus_q_dash);
+
+ fsquare_times(xx, in.q.x, 1);
+ fsquare_times(zz, in.q.z, 1);
+ fmul(result.two_q.x, xx, zz);
+ fdifference_backwards(zz, xx); // does zz = xx - zz
+ fscalar_product(zzz, zz, 121665);
+ fsum(zzz, xx);
+ fmul(result.two_q.z, zz, zzz);
+ }
// -----------------------------------------------------------------------------
-// Maybe swap the contents of two limb arrays (@a and @b), each @len elements
+// Maybe swap the contents of two uint64_t arrays (@a and @b), each @len elements
// long. Perform the swap iff @swap is non-zero.
//
// This function performs the swap without leaking any side-channel
// information.
// -----------------------------------------------------------------------------
-static void
-swap_conditional(limb a[5], limb b[5], limb iswap) {
- unsigned i;
- const limb swap = static_cast<limb>(-iswap);
-
- for (i = 0; i < 5; ++i) {
- const limb x = swap & (a[i] ^ b[i]);
- a[i] ^= x;
- b[i] ^= x;
- }
-}
+void swap_conditional(uint64_t a[5], uint64_t b[5], uint64_t iswap)
+ {
+ const uint64_t swap = static_cast<uint64_t>(-iswap);
+
+ for(size_t i = 0; i < 5; ++i)
+ {
+ const uint64_t x = swap & (a[i] ^ b[i]);
+ a[i] ^= x;
+ b[i] ^= x;
+ }
+ }
/* Calculates nQ where Q is the x-coordinate of a point on the curve
- *
- * resultx/resultz: the x coordinate of the resulting curve point (short form)
- * n: a little endian, 32-byte number
- * q: a point of the curve (short form)
- */
-static void
-cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
- limb a[5] = {0}, b[5] = {1}, c[5] = {1}, d[5] = {0};
- limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
- limb e[5] = {0}, f[5] = {1}, g[5] = {0}, h[5] = {1};
- limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
-
- unsigned i, j;
-
- copy_mem(nqpqx, q, 5);
-
- for (i = 0; i < 32; ++i) {
- u8 byteval = n[31 - i];
- for (j = 0; j < 8; ++j) {
- const limb bit = byteval >> 7;
-
- swap_conditional(nqx, nqpqx, bit);
- swap_conditional(nqz, nqpqz, bit);
-
- fmonty_out_t result { {nqx2, nqz2}, {nqpqx2, nqpqz2} };
- fmonty_in_t in { { nqx, nqz }, { nqpqx, nqpqz }, q };
- fmonty(result, in);
- swap_conditional(nqx2, nqpqx2, bit);
- swap_conditional(nqz2, nqpqz2, bit);
-
- t = nqx;
- nqx = nqx2;
- nqx2 = t;
- t = nqz;
- nqz = nqz2;
- nqz2 = t;
- t = nqpqx;
- nqpqx = nqpqx2;
- nqpqx2 = t;
- t = nqpqz;
- nqpqz = nqpqz2;
- nqpqz2 = t;
-
- byteval <<= 1;
- }
- }
-
- copy_mem(resultx, nqx, 5);
- copy_mem(resultz, nqz, 5);
-}
+*
+* resultx/resultz: the x coordinate of the resulting curve point (short form)
+* n: a little endian, 32-byte number
+* q: a point of the curve (short form)
+*/
+void cmult(uint64_t *resultx, uint64_t *resultz, const uint8_t *n, const uint64_t *q)
+ {
+ uint64_t a[5] = {0};
+ uint64_t b[5] = {1};
+ uint64_t c[5] = {1};
+ uint64_t d[5] = {0};
+ uint64_t e[5] = {0};
+ uint64_t f[5] = {1};
+ uint64_t g[5] = {0};
+ uint64_t h[5] = {1};
+
+ uint64_t *nqpqx = a;
+ uint64_t *nqpqz = b;
+ uint64_t *nqx = c;
+ uint64_t *nqz = d;
+ uint64_t *nqpqx2 = e;
+ uint64_t *nqpqz2 = f;
+ uint64_t *nqx2 = g;
+ uint64_t *nqz2 = h;
+
+ copy_mem(nqpqx, q, 5);
+
+ for(size_t i = 0; i < 32; ++i)
+ {
+ for(size_t j = 0; j < 8; ++j)
+ {
+ const uint64_t bit = (n[31 - i] >> (7-j)) & 1;
+
+ swap_conditional(nqx, nqpqx, bit);
+ swap_conditional(nqz, nqpqz, bit);
+
+ fmonty_out_t result { {nqx2, nqz2}, {nqpqx2, nqpqz2} };
+ fmonty_in_t in { { nqx, nqz }, { nqpqx, nqpqz }, q };
+ fmonty(result, in);
+ swap_conditional(nqx2, nqpqx2, bit);
+ swap_conditional(nqz2, nqpqz2, bit);
+
+ std::swap(nqx, nqx2);
+ std::swap(nqz, nqz2);
+ std::swap(nqpqx, nqpqx2);
+ std::swap(nqpqz, nqpqz2);
+ }
+ }
+
+ copy_mem(resultx, nqx, 5);
+ copy_mem(resultz, nqz, 5);
+ }
// -----------------------------------------------------------------------------
// Shamelessly copied from djb's code, tightened a little
// -----------------------------------------------------------------------------
-static void
-crecip(felem out, const felem z) {
- felem a,t0,b,c;
-
- /* 2 */ fsquare_times(a, z, 1); // a = 2
- /* 8 */ fsquare_times(t0, a, 2);
- /* 9 */ fmul(b, t0, z); // b = 9
- /* 11 */ fmul(a, b, a); // a = 11
- /* 22 */ fsquare_times(t0, a, 1);
- /* 2^5 - 2^0 = 31 */ fmul(b, t0, b);
- /* 2^10 - 2^5 */ fsquare_times(t0, b, 5);
- /* 2^10 - 2^0 */ fmul(b, t0, b);
- /* 2^20 - 2^10 */ fsquare_times(t0, b, 10);
- /* 2^20 - 2^0 */ fmul(c, t0, b);
- /* 2^40 - 2^20 */ fsquare_times(t0, c, 20);
- /* 2^40 - 2^0 */ fmul(t0, t0, c);
- /* 2^50 - 2^10 */ fsquare_times(t0, t0, 10);
- /* 2^50 - 2^0 */ fmul(b, t0, b);
- /* 2^100 - 2^50 */ fsquare_times(t0, b, 50);
- /* 2^100 - 2^0 */ fmul(c, t0, b);
- /* 2^200 - 2^100 */ fsquare_times(t0, c, 100);
- /* 2^200 - 2^0 */ fmul(t0, t0, c);
- /* 2^250 - 2^50 */ fsquare_times(t0, t0, 50);
- /* 2^250 - 2^0 */ fmul(t0, t0, b);
- /* 2^255 - 2^5 */ fsquare_times(t0, t0, 5);
- /* 2^255 - 21 */ fmul(out, t0, a);
+void crecip(uint64_t out[5], const uint64_t z[5])
+ {
+ uint64_t a[5];
+ uint64_t b[5];
+ uint64_t c[5];
+ uint64_t t0[5];
+
+ /* 2 */ fsquare_times(a, z, 1); // a = 2
+ /* 8 */ fsquare_times(t0, a, 2);
+ /* 9 */ fmul(b, t0, z); // b = 9
+ /* 11 */ fmul(a, b, a); // a = 11
+ /* 22 */ fsquare_times(t0, a, 1);
+ /* 2^5 - 2^0 = 31 */ fmul(b, t0, b);
+ /* 2^10 - 2^5 */ fsquare_times(t0, b, 5);
+ /* 2^10 - 2^0 */ fmul(b, t0, b);
+ /* 2^20 - 2^10 */ fsquare_times(t0, b, 10);
+ /* 2^20 - 2^0 */ fmul(c, t0, b);
+ /* 2^40 - 2^20 */ fsquare_times(t0, c, 20);
+ /* 2^40 - 2^0 */ fmul(t0, t0, c);
+ /* 2^50 - 2^10 */ fsquare_times(t0, t0, 10);
+ /* 2^50 - 2^0 */ fmul(b, t0, b);
+ /* 2^100 - 2^50 */ fsquare_times(t0, b, 50);
+ /* 2^100 - 2^0 */ fmul(c, t0, b);
+ /* 2^200 - 2^100 */ fsquare_times(t0, c, 100);
+ /* 2^200 - 2^0 */ fmul(t0, t0, c);
+ /* 2^250 - 2^50 */ fsquare_times(t0, t0, 50);
+ /* 2^250 - 2^0 */ fmul(t0, t0, b);
+ /* 2^255 - 2^5 */ fsquare_times(t0, t0, 5);
+ /* 2^255 - 21 */ fmul(out, t0, a);
+ }
+
}
void
-curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
-
- CT::poison(secret, 32);
- CT::poison(basepoint, 32);
-
- limb bp[5], x[5], z[5], zmone[5];
- uint8_t e[32];
- int i;
-
- for (i = 0;i < 32;++i) e[i] = secret[i];
- e[0] &= 248;
- e[31] &= 127;
- e[31] |= 64;
-
- fexpand(bp, basepoint);
- cmult(x, z, e, bp);
- crecip(zmone, z);
- fmul(z, x, zmone);
- fcontract(mypublic, z);
-
- CT::unpoison(secret, 32);
- CT::unpoison(basepoint, 32);
- CT::unpoison(mypublic, 32);
-}
+curve25519_donna(uint8_t *mypublic, const uint8_t *secret, const uint8_t *basepoint)
+ {
+ CT::poison(secret, 32);
+ CT::poison(basepoint, 32);
+
+ uint64_t bp[5], x[5], z[5], zmone[5];
+ uint8_t e[32];
+
+ copy_mem(e, secret, 32);
+ e[ 0] &= 248;
+ e[31] &= 127;
+ e[31] |= 64;
+
+ fexpand(bp, basepoint);
+ cmult(x, z, e, bp);
+ crecip(zmone, z);
+ fmul(z, x, zmone);
+ fcontract(mypublic, z);
+
+ CT::unpoison(secret, 32);
+ CT::unpoison(basepoint, 32);
+ CT::unpoison(mypublic, 32);
+ }
}
diff --git a/src/lib/utils/donna128.h b/src/lib/utils/donna128.h
index 53e0a085b..feaf11d05 100644
--- a/src/lib/utils/donna128.h
+++ b/src/lib/utils/donna128.h
@@ -114,7 +114,7 @@ inline uint64_t carry_shift(const donna128& a, size_t shift)
}
inline uint64_t combine_lower(const donna128& a, size_t s1,
- const donna128& b, size_t s2)
+ const donna128& b, size_t s2)
{
donna128 z = (a >> s1) | (b << s2);
return z.lo();
@@ -127,7 +127,7 @@ inline uint64_t carry_shift(const uint128_t a, size_t shift)
}
inline uint64_t combine_lower(const uint128_t a, size_t s1,
- const uint128_t b, size_t s2)
+ const uint128_t b, size_t s2)
{
return static_cast<uint64_t>((a >> s1) | (b << s2));
}