diff options
Diffstat (limited to 'src/lib/pubkey/mce/gf2m_small_m.h')
-rw-r--r-- | src/lib/pubkey/mce/gf2m_small_m.h | 296 |
1 files changed, 140 insertions, 156 deletions
diff --git a/src/lib/pubkey/mce/gf2m_small_m.h b/src/lib/pubkey/mce/gf2m_small_m.h index 223dfd511..6a8de4424 100644 --- a/src/lib/pubkey/mce/gf2m_small_m.h +++ b/src/lib/pubkey/mce/gf2m_small_m.h @@ -17,213 +17,199 @@ namespace Botan { -namespace gf2m_small_m { - typedef u16bit gf2m; -class Gf2m_Field +/** +* GF(2^m) field for m = [2...16] +*/ +class BOTAN_DLL GF2m_Field { public: - Gf2m_Field(size_t extdeg); + GF2m_Field(size_t extdeg); - gf2m gf_mul(gf2m x, gf2m y) + gf2m gf_mul(gf2m x, gf2m y) const { return ((x) ? gf_mul_fast(x, y) : 0); } - gf2m gf_square(gf2m x) + gf2m gf_square(gf2m x) const { - return ((x) ? m_gf_exp_table[_gf_modq_1(m_gf_log_table[x] << 1)] : 0); + return ((x) ? gf_exp(_gf_modq_1(gf_log(x) << 1)) : 0); } - gf2m square_rr(gf2m x) + gf2m square_rr(gf2m x) const { return _gf_modq_1(x << 1); } - // naming convention of GF(2^m) field operations: - // l logarithmic, unreduced - // r logarithmic, reduced - // n normal, non-zero - // z normal, might be zero - // - inline gf2m gf_mul_lll(gf2m a, gf2m b); - inline gf2m gf_mul_rrr(gf2m a, gf2m b); - inline gf2m gf_mul_nrr(gf2m a, gf2m b); - inline gf2m gf_mul_rrn(gf2m a, gf2m y); - inline gf2m gf_mul_lnn(gf2m x, gf2m y); - inline gf2m gf_mul_rnn(gf2m x, gf2m y); - inline gf2m gf_mul_nrn(gf2m a, gf2m y); - inline gf2m gf_mul_rnr(gf2m y, gf2m a); - inline gf2m gf_mul_zrz(gf2m a, gf2m y); - inline gf2m gf_mul_zzr(gf2m a, gf2m y); - inline gf2m gf_mul_nnr(gf2m y, gf2m a); - inline gf2m gf_sqrt(gf2m x) ; - gf2m gf_div(gf2m x, gf2m y); - inline gf2m gf_div_rnn(gf2m x, gf2m y); - inline gf2m gf_div_rnr(gf2m x, gf2m b); - inline gf2m gf_div_nrr(gf2m a, gf2m b); - inline gf2m gf_div_zzr(gf2m x, gf2m b); - inline gf2m gf_inv(gf2m x); - inline gf2m gf_inv_rn(gf2m x); - inline gf2m gf_square_ln(gf2m x); - inline gf2m gf_square_rr(gf2m a) ; - inline gf2m gf_l_from_n(gf2m x); + gf2m gf_mul_fast(gf2m x, gf2m y) const + { + return ((y) ? gf_exp(_gf_modq_1(gf_log(x) + gf_log(y))) : 0); + } - inline gf2m gf_mul_fast(gf2m a, gf2m b); + /* + naming convention of GF(2^m) field operations: + l logarithmic, unreduced + r logarithmic, reduced + n normal, non-zero + z normal, might be zero + */ - gf2m gf_exp(gf2m i) + gf2m gf_mul_lll(gf2m a, gf2m b) const { - return m_gf_exp_table[i]; /* alpha^i */ + return (a + b); } - gf2m gf_log(gf2m i) + gf2m gf_mul_rrr(gf2m a, gf2m b) const { - return m_gf_log_table[i]; /* return i when x=alpha^i */ + return (_gf_modq_1(gf_mul_lll(a, b))); } - inline gf2m gf_ord() const + gf2m gf_mul_nrr(gf2m a, gf2m b) const { - return m_gf_multiplicative_order; + return (gf_exp(gf_mul_rrr(a, b))); } - inline gf2m get_extension_degree() const + gf2m gf_mul_rrn(gf2m a, gf2m y) const { - return m_gf_extension_degree; + return _gf_modq_1(gf_mul_lll(a, gf_log(y))); } - inline gf2m get_cardinality() const + gf2m gf_mul_rnr(gf2m y, gf2m a) const { - return m_gf_cardinality; + return gf_mul_rrn(a, y); } - gf2m gf_pow(gf2m x, int i) ; + gf2m gf_mul_lnn(gf2m x, gf2m y) const + { + return (gf_log(x) + gf_log(y)); + } - private: - gf2m m_gf_extension_degree, m_gf_cardinality, m_gf_multiplicative_order; - std::vector<gf2m> m_gf_log_table; - std::vector<gf2m> m_gf_exp_table; + gf2m gf_mul_rnn(gf2m x, gf2m y) const + { + return _gf_modq_1(gf_mul_lnn(x, y)); + } - inline gf2m _gf_modq_1(s32bit d); - void init_log(); - void init_exp(); - }; + gf2m gf_mul_nrn(gf2m a, gf2m y) const + { + return gf_exp(_gf_modq_1((a) + gf_log(y))); + } -gf2m Gf2m_Field::_gf_modq_1(s32bit d) - { - return (((d) & gf_ord()) + ((d) >> m_gf_extension_degree)); - } + /** + * zero operand allowed + */ + gf2m gf_mul_zrz(gf2m a, gf2m y) const + { + return ( (y == 0) ? 0 : gf_mul_nrn(a, y) ); + } -gf2m Gf2m_Field::gf_mul_fast(gf2m x, gf2m y) - { - return ((y) ? m_gf_exp_table[_gf_modq_1(m_gf_log_table[x] + m_gf_log_table[y])] : 0); - } + gf2m gf_mul_zzr(gf2m a, gf2m y) const + { + return gf_mul_zrz(y, a); + } -gf2m Gf2m_Field::gf_mul_lll(gf2m a, gf2m b) - { - return (a + b); - } + /** + * non-zero operand + */ + gf2m gf_mul_nnr(gf2m y, gf2m a) const + { + return gf_mul_nrn(a, y); + } -gf2m Gf2m_Field::gf_mul_rrr(gf2m a, gf2m b) - { - return (_gf_modq_1(gf_mul_lll(a, b))); - } + gf2m gf_sqrt(gf2m x) const + { + return ((x) ? gf_exp(_gf_modq_1(gf_log(x) << (get_extension_degree()-1))) : 0); + } -gf2m Gf2m_Field::gf_mul_nrr(gf2m a, gf2m b) - { - return (gf_exp(gf_mul_rrr(a, b))); - } + gf2m gf_div_rnn(gf2m x, gf2m y) const + { + return _gf_modq_1(gf_log(x) - gf_log(y)); + } -gf2m Gf2m_Field::gf_mul_rrn(gf2m a, gf2m y) - { - return _gf_modq_1(gf_mul_lll(a, gf_log(y))); - } + gf2m gf_div_rnr(gf2m x, gf2m b) const + { + return _gf_modq_1(gf_log(x) - b); + } -gf2m Gf2m_Field::gf_mul_rnr(gf2m y, gf2m a) - { - return gf_mul_rrn(a, y); - } + gf2m gf_div_nrr(gf2m a, gf2m b) const + { + return gf_exp(_gf_modq_1(a - b)); + } -gf2m Gf2m_Field::gf_mul_lnn(gf2m x, gf2m y) - { - return (m_gf_log_table[x] + m_gf_log_table[y]); - } -gf2m Gf2m_Field::gf_mul_rnn(gf2m x, gf2m y) - { - return _gf_modq_1(gf_mul_lnn(x, y)); - } + gf2m gf_div_zzr(gf2m x, gf2m b) const + { + return ((x) ? gf_exp(_gf_modq_1(gf_log(x) - b)) : 0); + } -gf2m Gf2m_Field::gf_mul_nrn(gf2m a, gf2m y) - { - return m_gf_exp_table[_gf_modq_1((a) + m_gf_log_table[y])]; - } + gf2m gf_inv(gf2m x) const + { + return gf_exp(gf_ord() - gf_log(x)); + } -/** -* zero operand allowed -*/ -gf2m Gf2m_Field::gf_mul_zrz(gf2m a, gf2m y) - { - return ( (y == 0) ? 0 : gf_mul_nrn(a, y) ); - } + gf2m gf_inv_rn(gf2m x) const + { + return (gf_ord() - gf_log(x)); + } -gf2m Gf2m_Field::gf_mul_zzr(gf2m a, gf2m y) - { - return gf_mul_zrz(y, a); - } -/** -* non-zero operand -*/ -gf2m Gf2m_Field::gf_mul_nnr(gf2m y, gf2m a) - { - return gf_mul_nrn( a, y); - } + gf2m gf_square_ln(gf2m x) const + { + return gf_log(x) << 1; + } -gf2m Gf2m_Field::gf_sqrt(gf2m x) - { - return ((x) ? m_gf_exp_table[_gf_modq_1(m_gf_log_table[x] << (m_gf_extension_degree-1))] : 0); - } + gf2m gf_square_rr(gf2m a) const + { + return a << 1; + } -gf2m Gf2m_Field::gf_div_rnn(gf2m x, gf2m y) - { - return _gf_modq_1(m_gf_log_table[x] - m_gf_log_table[y]); - } -gf2m Gf2m_Field::gf_div_rnr(gf2m x, gf2m b) - { - return _gf_modq_1(m_gf_log_table[x] - b); - } -gf2m Gf2m_Field::gf_div_nrr(gf2m a, gf2m b) - { - return m_gf_exp_table[_gf_modq_1(a - b)]; - } + gf2m gf_l_from_n(gf2m x) const + { + return gf_log(x); + } -gf2m Gf2m_Field::gf_div_zzr(gf2m x, gf2m b) - { - return ((x) ? m_gf_exp_table[_gf_modq_1(m_gf_log_table[x] - b)] : 0); - } + gf2m gf_div(gf2m x, gf2m y) const; -gf2m Gf2m_Field::gf_inv(gf2m x) - { - return m_gf_exp_table[gf_ord() - m_gf_log_table[x]]; - } -gf2m Gf2m_Field::gf_inv_rn(gf2m x) - { - return (gf_ord() - m_gf_log_table[x]); - } + gf2m gf_pow(gf2m x, int i) const; -gf2m Gf2m_Field::gf_square_ln(gf2m x) - { - return m_gf_log_table[x] << 1; - } + gf2m gf_exp(gf2m i) const + { + return m_gf_exp_table.at(i); /* alpha^i */ + } -gf2m Gf2m_Field::gf_square_rr(gf2m a) - { - return a << 1; - } + gf2m gf_log(gf2m i) const + { + return m_gf_log_table.at(i); /* return i when x=alpha^i */ + } -gf2m Gf2m_Field::gf_l_from_n(gf2m x) - { - return m_gf_log_table[x]; - } + gf2m gf_ord() const + { + return m_gf_multiplicative_order; + } + + gf2m get_extension_degree() const + { + return m_gf_extension_degree; + } + + gf2m get_cardinality() const + { + return static_cast<gf2m>(1 << get_extension_degree()); + } + + private: + gf2m _gf_modq_1(s32bit d) const + { + /* residual modulo q-1 + when -q < d < 0, we get (q-1+d) + when 0 <= d < q, we get (d) + when q <= d < 2q-1, we get (d-q+1) + */ + return (((d) & gf_ord()) + ((d) >> get_extension_degree())); + } + + gf2m m_gf_extension_degree, m_gf_multiplicative_order; + const std::vector<gf2m>& m_gf_log_table; + const std::vector<gf2m>& m_gf_exp_table; + }; u32bit encode_gf2m(gf2m to_enc, byte* mem); @@ -231,6 +217,4 @@ gf2m decode_gf2m(const byte* mem); } -} - #endif |