diff options
Diffstat (limited to 'src/lib/math')
-rw-r--r-- | src/lib/math/ec_gfp/point_gfp.cpp | 328 | ||||
-rw-r--r-- | src/lib/math/ec_gfp/point_gfp.h | 51 |
2 files changed, 251 insertions, 128 deletions
diff --git a/src/lib/math/ec_gfp/point_gfp.cpp b/src/lib/math/ec_gfp/point_gfp.cpp index 2505e4d54..a319d8657 100644 --- a/src/lib/math/ec_gfp/point_gfp.cpp +++ b/src/lib/math/ec_gfp/point_gfp.cpp @@ -2,36 +2,55 @@ * Point arithmetic on elliptic curves over GF(p) * * (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke -* 2008-2011,2012,2014 Jack Lloyd +* 2008-2011,2012,2014,2015 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include <botan/point_gfp.h> #include <botan/numthry.h> +#include <botan/loadstor.h> namespace Botan { +const size_t BOTAN_POINTGFP_MONTGOMERY_BLINDING_BITS = 20; +const size_t BOTAN_POINTGFP_RANDOMIZE_BLINDING_BITS = 48; + +#define BOTAN_POINTGFP_BLINDED_MULTIPLY_USE_MONTGOMERY_LADDER 1 + PointGFp::PointGFp(const CurveGFp& curve) : - curve(curve), - coord_x(0), - coord_y(1), - coord_z(0) + m_curve(curve), + m_coord_x(0), + m_coord_y(1), + m_coord_z(0) { - curve.to_rep(coord_x, ws); - curve.to_rep(coord_y, ws); - curve.to_rep(coord_z, ws); + m_curve.to_rep(m_coord_x, m_monty_ws); + m_curve.to_rep(m_coord_y, m_monty_ws); + m_curve.to_rep(m_coord_z, m_monty_ws); } PointGFp::PointGFp(const CurveGFp& curve, const BigInt& x, const BigInt& y) : - curve(curve), - coord_x(x), - coord_y(y), - coord_z(1) + m_curve(curve), + m_coord_x(x), + m_coord_y(y), + m_coord_z(1) + { + m_curve.to_rep(m_coord_x, m_monty_ws); + m_curve.to_rep(m_coord_y, m_monty_ws); + m_curve.to_rep(m_coord_z, m_monty_ws); + } + +void PointGFp::randomize_repr(RandomNumberGenerator& rng) { - curve.to_rep(coord_x, ws); - curve.to_rep(coord_y, ws); - curve.to_rep(coord_z, ws); + BigInt mask(rng, BOTAN_POINTGFP_RANDOMIZE_BLINDING_BITS, false); + + m_curve.to_rep(mask, m_monty_ws); + const BigInt mask2 = curve_mult(mask, mask); + const BigInt mask3 = curve_mult(mask2, mask); + + m_coord_x = curve_mult(m_coord_x, mask2); + m_coord_y = curve_mult(m_coord_y, mask3); + m_coord_z = curve_mult(m_coord_z, mask); } // Point addition @@ -39,15 +58,15 @@ void PointGFp::add(const PointGFp& rhs, std::vector<BigInt>& ws_bn) { if(is_zero()) { - coord_x = rhs.coord_x; - coord_y = rhs.coord_y; - coord_z = rhs.coord_z; + m_coord_x = rhs.m_coord_x; + m_coord_y = rhs.m_coord_y; + m_coord_z = rhs.m_coord_z; return; } else if(rhs.is_zero()) return; - const BigInt& p = curve.get_p(); + const BigInt& p = m_curve.get_p(); BigInt& rhs_z2 = ws_bn[0]; BigInt& U1 = ws_bn[1]; @@ -64,13 +83,13 @@ void PointGFp::add(const PointGFp& rhs, std::vector<BigInt>& ws_bn) http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2 */ - curve_sqr(rhs_z2, rhs.coord_z); - curve_mult(U1, coord_x, rhs_z2); - curve_mult(S1, coord_y, curve_mult(rhs.coord_z, rhs_z2)); + curve_sqr(rhs_z2, rhs.m_coord_z); + curve_mult(U1, m_coord_x, rhs_z2); + curve_mult(S1, m_coord_y, curve_mult(rhs.m_coord_z, rhs_z2)); - curve_sqr(lhs_z2, coord_z); - curve_mult(U2, rhs.coord_x, lhs_z2); - curve_mult(S2, rhs.coord_y, curve_mult(coord_z, lhs_z2)); + curve_sqr(lhs_z2, m_coord_z); + curve_mult(U2, rhs.m_coord_x, lhs_z2); + curve_mult(S2, rhs.m_coord_y, curve_mult(m_coord_z, lhs_z2)); H = U2; H -= U1; @@ -90,7 +109,10 @@ void PointGFp::add(const PointGFp& rhs, std::vector<BigInt>& ws_bn) return; } - *this = PointGFp(curve); // setting myself to zero + // setting to zero: + m_coord_x = 0; + m_coord_y = 1; + m_coord_z = 0; return; } @@ -100,22 +122,22 @@ void PointGFp::add(const PointGFp& rhs, std::vector<BigInt>& ws_bn) U2 = curve_mult(U1, U2); - curve_sqr(coord_x, r); - coord_x -= S2; - coord_x -= (U2 << 1); - while(coord_x.is_negative()) - coord_x += p; + curve_sqr(m_coord_x, r); + m_coord_x -= S2; + m_coord_x -= (U2 << 1); + while(m_coord_x.is_negative()) + m_coord_x += p; - U2 -= coord_x; + U2 -= m_coord_x; if(U2.is_negative()) U2 += p; - curve_mult(coord_y, r, U2); - coord_y -= curve_mult(S1, S2); - if(coord_y.is_negative()) - coord_y += p; + curve_mult(m_coord_y, r, U2); + m_coord_y -= curve_mult(S1, S2); + if(m_coord_y.is_negative()) + m_coord_y += p; - curve_mult(coord_z, curve_mult(coord_z, rhs.coord_z), H); + curve_mult(m_coord_z, curve_mult(m_coord_z, rhs.m_coord_z), H); } // *this *= 2 @@ -123,9 +145,9 @@ void PointGFp::mult2(std::vector<BigInt>& ws_bn) { if(is_zero()) return; - else if(coord_y.is_zero()) + else if(m_coord_y.is_zero()) { - *this = PointGFp(curve); // setting myself to zero + *this = PointGFp(m_curve); // setting myself to zero return; } @@ -133,7 +155,7 @@ void PointGFp::mult2(std::vector<BigInt>& ws_bn) http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-1986-cc */ - const BigInt& p = curve.get_p(); + const BigInt& p = m_curve.get_p(); BigInt& y_2 = ws_bn[0]; BigInt& S = ws_bn[1]; @@ -145,17 +167,17 @@ void PointGFp::mult2(std::vector<BigInt>& ws_bn) BigInt& y = ws_bn[7]; BigInt& z = ws_bn[8]; - curve_sqr(y_2, coord_y); + curve_sqr(y_2, m_coord_y); - curve_mult(S, coord_x, y_2); + curve_mult(S, m_coord_x, y_2); S <<= 2; // * 4 while(S >= p) S -= p; - curve_sqr(z4, curve_sqr(coord_z)); - curve_mult(a_z4, curve.get_a_rep(), z4); + curve_sqr(z4, curve_sqr(m_coord_z)); + curve_mult(a_z4, m_curve.get_a_rep(), z4); - M = curve_sqr(coord_x); + M = curve_sqr(m_coord_x); M *= 3; M += a_z4; while(M >= p) @@ -180,14 +202,14 @@ void PointGFp::mult2(std::vector<BigInt>& ws_bn) if(y.is_negative()) y += p; - curve_mult(z, coord_y, coord_z); + curve_mult(z, m_coord_y, m_coord_z); z <<= 1; if(z >= p) z -= p; - coord_x = x; - coord_y = y; - coord_z = z; + m_coord_x = x; + m_coord_y = y; + m_coord_z = z; } // arithmetic operators @@ -221,7 +243,7 @@ PointGFp multi_exponentiate(const PointGFp& p1, const BigInt& z1, { const PointGFp p3 = p1 + p2; - PointGFp H(p1.curve); // create as zero + PointGFp H(p1.get_curve()); // create as zero size_t bits_left = std::max(z1.bits(), z2.bits()); std::vector<BigInt> ws(9); @@ -251,22 +273,24 @@ PointGFp multi_exponentiate(const PointGFp& p1, const BigInt& z1, PointGFp operator*(const BigInt& scalar, const PointGFp& point) { - //BOTAN_ASSERT(point.on_the_curve(), "Input is valid"); + //BOTAN_ASSERT(point.on_the_curve(), "Input is on the curve"); const CurveGFp& curve = point.get_curve(); - if(scalar.is_zero()) - return PointGFp(curve); // zero point + const size_t scalar_bits = scalar.bits(); std::vector<BigInt> ws(9); - if(scalar.abs() <= 2) // special cases for small values + if(scalar_bits <= 2) { - byte value = scalar.abs().byte_at(0); + const byte abs_val = scalar.byte_at(0); + + if(abs_val == 0) + return PointGFp::zero_of(curve); PointGFp result = point; - if(value == 2) + if(abs_val == 2) result.mult2(ws); if(scalar.is_negative()) @@ -275,94 +299,164 @@ PointGFp operator*(const BigInt& scalar, const PointGFp& point) return result; } - const size_t scalar_bits = scalar.bits(); + PointGFp R[2] = { PointGFp(curve), point }; - PointGFp x1(curve); // zero + for(size_t i = scalar_bits; i > 0; i--) + { + const size_t b = scalar.get_bit(i - 1); + R[b ^ 1].add(R[b], ws); + R[b].mult2(ws); + } - size_t bits_left = scalar_bits; + if(scalar.is_negative()) + R[0].negate(); -#if BOTAN_CURVE_GFP_USE_MONTGOMERY_LADDER + //BOTAN_ASSERT(R[0].on_the_curve(), "Output is on the curve"); - PointGFp x2 = point; - while(bits_left) + return R[0]; + } + +Blinded_Point_Multiply::Blinded_Point_Multiply(const PointGFp& base, const BigInt& order, size_t h) : + m_order(order), m_h(h ? h : 4), m_ws(9) + { + // Upper bound is a sanity check rather than hard limit + if(m_h < 1 || m_h > 8) + throw std::invalid_argument("Blinded_Point_Multiply invalid h param"); + + const CurveGFp& curve = base.get_curve(); + +#if BOTAN_POINTGFP_BLINDED_MULTIPLY_USE_MONTGOMERY_LADDER + + const PointGFp inv = -base; + + m_U.resize(6*m_h + 3); + + m_U[3*m_h+0] = inv; + m_U[3*m_h+1] = PointGFp::zero_of(curve); + m_U[3*m_h+2] = base; + + for(size_t i = 1; i <= 3 * m_h + 1; ++i) { - if(scalar.get_bit(bits_left - 1)) - { - x1.add(x2, ws); - x2.mult2(ws); - } - else - { - x2.add(x1, ws); - x1.mult2(ws); - } + m_U[3*m_h+1+i] = m_U[3*m_h+i]; + m_U[3*m_h+1+i].add(base, m_ws); - --bits_left; + m_U[3*m_h+1-i] = m_U[3*m_h+2-i]; + m_U[3*m_h+1-i].add(inv, m_ws); } - #else - const size_t window_bits = 4; + m_U.resize(1 << m_h); + m_U[0] = PointGFp::zero_of(curve); + m_U[1] = base; + + for(size_t i = 2; i < m_U.size(); ++i) + { + m_U[i] = m_U[i-1]; + m_U[i].add(base, m_ws); + } +#endif + } - std::vector<PointGFp> Ps(1 << window_bits); - Ps[0] = x1; - Ps[1] = point; +PointGFp Blinded_Point_Multiply::blinded_multiply(const BigInt& scalar_in, + RandomNumberGenerator& rng) + { + if(scalar_in.is_negative()) + throw std::invalid_argument("Blinded_Point_Multiply scalar must be positive"); + + // Choose a small mask m and use k' = k + m*order (Coron's 1st countermeasure) + const u64bit mask = rng.gen_mask(BOTAN_POINTGFP_MONTGOMERY_BLINDING_BITS); + const BigInt scalar = scalar_in + m_order * mask; + const size_t scalar_bits = scalar.bits(); + + // Randomize each point representation (Coron's 3rd countermeasure) + for(size_t i = 0; i != m_U.size(); ++i) + m_U[i].randomize_repr(rng); + +#if BOTAN_POINTGFP_BLINDED_MULTIPLY_USE_MONTGOMERY_LADDER + PointGFp R = m_U.at(3*m_h + 2); // base point + int32_t alpha = 0; + + R.randomize_repr(rng); + + /* + Algorithm 7 from "Randomizing the Montgomery Powering Ladder" + Duc-Phong Le, Chik How Tan and Michael Tunstall + http://eprint.iacr.org/2015/657 - for(size_t i = 2; i < Ps.size(); ++i) + It takes a random walk through (a subset of) the set of addition + chains that end in k. + */ + for(size_t i = scalar_bits; i > 0; i--) { - Ps[i] = Ps[i-1]; - Ps[i].add(point, ws); + const int32_t ki = scalar.get_bit(i); + + // choose gamma from -h,...,h + const int32_t gamma = static_cast<int32_t>((rng.next_byte() % (2*m_h))) - m_h; + const int32_t l = gamma - 2*alpha + ki - (ki ^ 1); + + R.mult2(m_ws); + R.add(m_U.at(3*m_h + 1 + l), m_ws); + alpha = gamma; } - while(bits_left >= window_bits) + const int32_t k0 = scalar.get_bit(0); + R.add(m_U[3*m_h + 1 - alpha - (k0 ^ 1)], m_ws); + +#else + + size_t bits_left = scalar_bits; + + PointGFp R = m_U[0]; + + while(bits_left >= m_h) { - for(size_t i = 0; i != window_bits; ++i) - x1.mult2(ws); + for(size_t i = 0; i != m_h; ++i) + R.mult2(m_ws); - const u32bit nibble = scalar.get_substring(bits_left - window_bits, window_bits); - x1.add(Ps[nibble], ws); - bits_left -= window_bits; + const u32bit nibble = scalar.get_substring(bits_left - m_h, m_h); + R.add(m_U[nibble], m_ws); + bits_left -= m_h; } while(bits_left) { - x1.mult2(ws); + R.mult2(m_ws); if(scalar.get_bit(bits_left-1)) - x1.add(point, ws); + R.add(m_U[1], m_ws); --bits_left; } - #endif - if(scalar.is_negative()) - x1.negate(); + //BOTAN_ASSERT(R.on_the_curve(), "Output is on the curve"); - //BOTAN_ASSERT(x1.on_the_curve(), "Output is on the curve"); - - return x1; + return R; } BigInt PointGFp::get_affine_x() const { if(is_zero()) + abort(); + if(is_zero()) throw Illegal_Transformation("Cannot convert zero point to affine"); - BigInt z2 = curve_sqr(coord_z); - curve.from_rep(z2, ws); - z2 = inverse_mod(z2, curve.get_p()); + BigInt z2 = curve_sqr(m_coord_z); + m_curve.from_rep(z2, m_monty_ws); + z2 = inverse_mod(z2, m_curve.get_p()); - return curve_mult(z2, coord_x); + return curve_mult(z2, m_coord_x); } BigInt PointGFp::get_affine_y() const { if(is_zero()) + abort(); + if(is_zero()) throw Illegal_Transformation("Cannot convert zero point to affine"); - BigInt z3 = curve_mult(coord_z, curve_sqr(coord_z)); - z3 = inverse_mod(z3, curve.get_p()); - curve.to_rep(z3, ws); + BigInt z3 = curve_mult(m_coord_z, curve_sqr(m_coord_z)); + z3 = inverse_mod(z3, m_curve.get_p()); + m_curve.to_rep(z3, m_monty_ws); - return curve_mult(z3, coord_y); + return curve_mult(z3, m_coord_y); } bool PointGFp::on_the_curve() const @@ -376,22 +470,22 @@ bool PointGFp::on_the_curve() const if(is_zero()) return true; - const BigInt y2 = curve.from_rep(curve_sqr(coord_y), ws); - const BigInt x3 = curve_mult(coord_x, curve_sqr(coord_x)); - const BigInt ax = curve_mult(coord_x, curve.get_a_rep()); - const BigInt z2 = curve_sqr(coord_z); + const BigInt y2 = m_curve.from_rep(curve_sqr(m_coord_y), m_monty_ws); + const BigInt x3 = curve_mult(m_coord_x, curve_sqr(m_coord_x)); + const BigInt ax = curve_mult(m_coord_x, m_curve.get_a_rep()); + const BigInt z2 = curve_sqr(m_coord_z); - if(coord_z == z2) // Is z equal to 1 (in Montgomery form)? + if(m_coord_z == z2) // Is z equal to 1 (in Montgomery form)? { - if(y2 != curve.from_rep(x3 + ax + curve.get_b_rep(), ws)) + if(y2 != m_curve.from_rep(x3 + ax + m_curve.get_b_rep(), m_monty_ws)) return false; } - const BigInt z3 = curve_mult(coord_z, z2); + const BigInt z3 = curve_mult(m_coord_z, z2); const BigInt ax_z4 = curve_mult(ax, curve_sqr(z2)); - const BigInt b_z6 = curve_mult(curve.get_b_rep(), curve_sqr(z3)); + const BigInt b_z6 = curve_mult(m_curve.get_b_rep(), curve_sqr(z3)); - if(y2 != curve.from_rep(x3 + ax_z4 + b_z6, ws)) + if(y2 != m_curve.from_rep(x3 + ax_z4 + b_z6, m_monty_ws)) return false; return true; @@ -400,11 +494,11 @@ bool PointGFp::on_the_curve() const // swaps the states of *this and other, does not throw! void PointGFp::swap(PointGFp& other) { - curve.swap(other.curve); - coord_x.swap(other.coord_x); - coord_y.swap(other.coord_y); - coord_z.swap(other.coord_z); - ws.swap(other.ws); + m_curve.swap(other.m_curve); + m_coord_x.swap(other.m_coord_x); + m_coord_y.swap(other.m_coord_y); + m_coord_z.swap(other.m_coord_z); + m_monty_ws.swap(other.m_monty_ws); } bool PointGFp::operator==(const PointGFp& other) const diff --git a/src/lib/math/ec_gfp/point_gfp.h b/src/lib/math/ec_gfp/point_gfp.h index 813ead81e..bb3438697 100644 --- a/src/lib/math/ec_gfp/point_gfp.h +++ b/src/lib/math/ec_gfp/point_gfp.h @@ -2,7 +2,7 @@ * Point arithmetic on elliptic curves over GF(p) * * (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke -* 2008-2011,2014 Jack Lloyd +* 2008-2011,2014,2015 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ @@ -58,6 +58,11 @@ class BOTAN_DLL PointGFp */ PointGFp(const CurveGFp& curve); + static PointGFp zero_of(const CurveGFp& curve) + { + return PointGFp(curve); + } + /** * Copy constructor */ @@ -113,6 +118,7 @@ class BOTAN_DLL PointGFp * @param scalar the PointGFp to multiply with *this * @result resulting PointGFp */ + PointGFp& operator*=(const BigInt& scalar); /** @@ -142,7 +148,7 @@ class BOTAN_DLL PointGFp PointGFp& negate() { if(!is_zero()) - coord_y = curve.get_p() - coord_y; + m_coord_y = m_curve.get_p() - m_coord_y; return *this; } @@ -150,7 +156,7 @@ class BOTAN_DLL PointGFp * Return base curve of this point * @result the curve over GF(p) of this point */ - const CurveGFp& get_curve() const { return curve; } + const CurveGFp& get_curve() const { return m_curve; } /** * get affine x coordinate @@ -169,7 +175,7 @@ class BOTAN_DLL PointGFp * @result true, if this point is at infinity, false otherwise. */ bool is_zero() const - { return (coord_x.is_zero() && coord_z.is_zero()); } + { return (m_coord_x.is_zero() && m_coord_z.is_zero()); } /** * Checks whether the point is to be found on the underlying @@ -185,33 +191,40 @@ class BOTAN_DLL PointGFp void swap(PointGFp& other); /** + * Randomize the point representation + * The actual value (get_affine_x, get_affine_y) does not change + */ + void randomize_repr(RandomNumberGenerator& rng); + + /** * Equality operator */ bool operator==(const PointGFp& other) const; private: + friend class Blinded_Point_Multiply; BigInt curve_mult(const BigInt& x, const BigInt& y) const { BigInt z; - curve.mul(z, x, y, ws); + m_curve.mul(z, x, y, m_monty_ws); return z; } void curve_mult(BigInt& z, const BigInt& x, const BigInt& y) const { - curve.mul(z, x, y, ws); + m_curve.mul(z, x, y, m_monty_ws); } BigInt curve_sqr(const BigInt& x) const { BigInt z; - curve.sqr(z, x, ws); + m_curve.sqr(z, x, m_monty_ws); return z; } void curve_sqr(BigInt& z, const BigInt& x) const { - curve.sqr(z, x, ws); + m_curve.sqr(z, x, m_monty_ws); } /** @@ -226,9 +239,9 @@ class BOTAN_DLL PointGFp */ void mult2(std::vector<BigInt>& workspace); - CurveGFp curve; - BigInt coord_x, coord_y, coord_z; - mutable secure_vector<word> ws; // workspace for Montgomery + CurveGFp m_curve; + BigInt m_coord_x, m_coord_y, m_coord_z; + mutable secure_vector<word> m_monty_ws; // workspace for Montgomery }; // relational operators @@ -270,6 +283,22 @@ template<typename Alloc> PointGFp OS2ECP(const std::vector<byte, Alloc>& data, const CurveGFp& curve) { return OS2ECP(data.data(), data.size(), curve); } +/** + +*/ +class BOTAN_DLL Blinded_Point_Multiply + { + public: + Blinded_Point_Multiply(const PointGFp& base, const BigInt& order, size_t h = 0); + + PointGFp blinded_multiply(const BigInt& scalar, RandomNumberGenerator& rng); + private: + const BigInt& m_order; + const size_t m_h; + std::vector<BigInt> m_ws; + std::vector<PointGFp> m_U; + }; + } namespace std { |