aboutsummaryrefslogtreecommitdiffstats
path: root/src/cli/bench.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/cli/bench.cpp')
-rw-r--r--src/cli/bench.cpp767
1 files changed, 767 insertions, 0 deletions
diff --git a/src/cli/bench.cpp b/src/cli/bench.cpp
new file mode 100644
index 000000000..d2688421c
--- /dev/null
+++ b/src/cli/bench.cpp
@@ -0,0 +1,767 @@
+/*
+* (C) 2009,2010,2014,2015 Jack Lloyd
+* (C) 2015 Simon Warta (Kullo GmbH)
+*
+* Botan is released under the Simplified BSD License (see license.txt)
+*/
+
+#include "cli.h"
+#include <sstream>
+#include <iomanip>
+#include <chrono>
+#include <functional>
+
+// Always available:
+#include <botan/block_cipher.h>
+#include <botan/stream_cipher.h>
+#include <botan/hash.h>
+#include <botan/mac.h>
+#include <botan/cipher_mode.h>
+#include <botan/auto_rng.h>
+
+#if defined(BOTAN_HAS_PUBLIC_KEY_CRYPTO)
+ #include <botan/pkcs8.h>
+ #include <botan/pubkey.h>
+ #include <botan/x509_key.h>
+#endif
+
+#if defined(BOTAN_HAS_NUMBERTHEORY)
+ #include <botan/numthry.h>
+#endif
+
+#if defined(BOTAN_HAS_RSA)
+ #include <botan/rsa.h>
+#endif
+
+#if defined(BOTAN_HAS_ECDSA)
+ #include <botan/ecdsa.h>
+#endif
+
+#if defined(BOTAN_HAS_DIFFIE_HELLMAN)
+ #include <botan/dh.h>
+#endif
+
+#if defined(BOTAN_HAS_CURVE_25519)
+ #include <botan/curve25519.h>
+#endif
+
+#if defined(BOTAN_HAS_ECDH)
+ #include <botan/ecdh.h>
+#endif
+
+#if defined(BOTAN_HAS_MCELIECE)
+ #include <botan/mceliece.h>
+ #include <botan/mce_kem.h>
+#endif
+
+namespace Botan_CLI {
+
+namespace {
+
+class Timer
+ {
+ public:
+ static uint64_t get_clock() // returns nanoseconds with arbitrary epoch
+ {
+ auto now = std::chrono::high_resolution_clock::now().time_since_epoch();
+ return std::chrono::duration_cast<std::chrono::nanoseconds>(now).count();
+ }
+
+ Timer(const std::string& name, uint64_t event_mult = 1) :
+ m_name(name), m_event_mult(event_mult) {}
+
+ Timer(const std::string& what,
+ const std::string& provider,
+ const std::string& doing,
+ uint64_t event_mult = 1) :
+ m_name(what + (provider.empty() ? provider : " [" + provider + "]")),
+ m_doing(doing),
+ m_event_mult(event_mult) {}
+
+ void start() { stop(); m_timer_start = get_clock(); }
+
+ void stop()
+ {
+ if(m_timer_start)
+ {
+ const uint64_t now = get_clock();
+
+ if(now > m_timer_start)
+ m_time_used += (now - m_timer_start);
+
+ m_timer_start = 0;
+ ++m_event_count;
+ }
+ }
+
+ bool under(std::chrono::milliseconds msec)
+ {
+ return (milliseconds() < msec.count());
+ }
+
+ struct Timer_Scope
+ {
+ public:
+ Timer_Scope(Timer& timer) : m_timer(timer) { m_timer.start(); }
+ ~Timer_Scope() { m_timer.stop(); }
+ private:
+ Timer& m_timer;
+ };
+
+ template<typename F>
+ auto run(F f) -> decltype(f())
+ {
+ Timer_Scope timer(*this);
+ return f();
+ }
+
+ uint64_t value() { stop(); return m_time_used; }
+ double seconds() { return milliseconds() / 1000.0; }
+ double milliseconds() { return value() / 1000000.0; }
+
+ double ms_per_event() { return milliseconds() / events(); }
+ double seconds_per_event() { return seconds() / events(); }
+
+ uint64_t event_mult() const { return m_event_mult; }
+ uint64_t events() const { return m_event_count * m_event_mult; }
+ std::string get_name() const { return m_name; }
+ std::string doing() const { return m_doing.empty() ? m_doing : " " + m_doing; }
+ private:
+ std::string m_name, m_doing;
+ uint64_t m_time_used = 0, m_timer_start = 0;
+ uint64_t m_event_count = 0, m_event_mult = 0;
+ };
+
+inline bool operator<(const Timer& x, const Timer& y)
+ {
+ return (x.get_name() < y.get_name());
+ }
+
+inline bool operator==(const Timer& x, const Timer& y)
+ {
+ return (x.get_name() == y.get_name());
+ }
+
+std::ostream& operator<<(std::ostream& out, Timer& timer)
+ {
+ const double events_per_second = timer.events() / timer.seconds();
+
+ // use ostringstream to avoid messing with flags on the ostream& itself
+
+ std::ostringstream oss;
+
+ if(timer.event_mult() % 1024 == 0)
+ {
+ // assumed to be a byte count
+ const size_t MiB = 1024*1024;
+
+ const double MiB_total = static_cast<double>(timer.events()) / MiB;
+ const double MiB_per_sec = MiB_total / timer.seconds();
+
+ oss << timer.get_name() << timer.doing() << " "
+ << std::fixed << std::setprecision(3) << MiB_per_sec << " MiB/sec"
+ << " (" << MiB_total << " MiB in " << timer.milliseconds() << " ms)\n";
+ }
+ else
+ {
+ // general event counter
+ oss << timer.get_name() << " "
+ << static_cast<uint64_t>(events_per_second)
+ << timer.doing() << "/sec; "
+ << std::setprecision(2) << std::fixed
+ << timer.ms_per_event() << " ms/op"
+ << " (" << timer.events() << " " << (timer.events() == 1 ? "op" : "ops")
+ << " in " << timer.milliseconds() << " ms)\n";
+ }
+
+ out << oss.str();
+ return out;
+ }
+
+std::vector<std::string> default_benchmark_list()
+ {
+ /*
+ This is not intended to be exhaustive: it just hits the high
+ points of the most interesting or widely used algorithms.
+ */
+
+ return {
+ /* Block ciphers */
+ "AES-128",
+ "AES-192",
+ "AES-256",
+ "Blowfish",
+ "CAST-128",
+ "CAST-256",
+ "DES",
+ "TripleDES",
+ "IDEA",
+ "KASUMI",
+ "Noekeon",
+ "Serpent",
+ "Threefish-512",
+ "Twofish",
+
+ /* Cipher modes */
+ "AES-128/CBC",
+ "AES-128/CTR-BE",
+ "AES-128/EAX",
+ "AES-128/OCB",
+ "AES-128/GCM",
+ "AES-128/XTS",
+
+ "Serpent/CBC",
+ "Serpent/CTR-BE",
+ "Serpent/EAX",
+ "Serpent/OCB",
+ "Serpent/GCM",
+ "Serpent/XTS",
+
+ "ChaCha20Poly1305",
+
+ /* Stream ciphers */
+ "RC4",
+ "Salsa20",
+
+ /* Hashes */
+ "Tiger",
+ "RIPEMD-160",
+ "SHA-160",
+ "SHA-256",
+ "SHA-512",
+ "Skein-512",
+ "Keccak-1600(512)",
+ "Whirlpool",
+
+ /* MACs */
+ "CMAC(AES-128)",
+ "HMAC(SHA-256)",
+
+ /* Misc */
+ "random_prime"
+
+ /* pubkey */
+ "RSA",
+ "DH",
+ "ECDH",
+ "ECDSA",
+ "Curve25519",
+ "McEliece",
+ };
+ }
+
+}
+
+class Benchmark : public Command
+ {
+ public:
+ Benchmark() : Command("bench --msec=1000 --provider= --buf-size=8 *algos") {}
+
+ void go()
+ {
+ std::chrono::milliseconds msec(get_arg_sz("msec"));
+ const size_t buf_size = get_arg_sz("buf-size");
+ const std::string provider = get_arg("provider");
+
+ std::vector<std::string> algos = get_arg_list("algos");
+ const bool using_defaults = (algos.empty());
+ if(using_defaults)
+ algos = default_benchmark_list();
+
+ for(auto algo : algos)
+ {
+ using namespace std::placeholders;
+
+ if(auto enc = Botan::get_cipher_mode(algo, Botan::ENCRYPTION))
+ {
+ auto dec = Botan::get_cipher_mode(algo, Botan::DECRYPTION);
+ bench_cipher_mode(*enc, *dec, msec, buf_size);
+ }
+ else if(Botan::BlockCipher::providers(algo).size() > 0)
+ {
+ bench_providers_of<Botan::BlockCipher>(
+ algo, provider, msec, buf_size,
+ std::bind(&Benchmark::bench_block_cipher, this, _1, _2, _3, _4));
+ }
+ else if(Botan::StreamCipher::providers(algo).size() > 0)
+ {
+ bench_providers_of<Botan::StreamCipher>(
+ algo, provider, msec, buf_size,
+ std::bind(&Benchmark::bench_stream_cipher, this, _1, _2, _3, _4));
+ }
+ else if(Botan::HashFunction::providers(algo).size() > 0)
+ {
+ bench_providers_of<Botan::HashFunction>(
+ algo, provider, msec, buf_size,
+ std::bind(&Benchmark::bench_hash, this, _1, _2, _3, _4));
+ }
+ else if(Botan::MessageAuthenticationCode::providers(algo).size() > 0)
+ {
+ bench_providers_of<Botan::MessageAuthenticationCode>(
+ algo, provider, msec, buf_size,
+ std::bind(&Benchmark::bench_mac, this, _1, _2, _3, _4));
+ }
+#if defined(BOTAN_HAS_RSA)
+ else if(algo == "RSA")
+ {
+ bench_rsa(provider, msec);
+ }
+#endif
+#if defined(BOTAN_HAS_ECDSA)
+ else if(algo == "ECDSA")
+ {
+ bench_ecdsa(provider, msec);
+ }
+#endif
+#if defined(BOTAN_HAS_DIFFIE_HELLMAN)
+ else if(algo == "DH")
+ {
+ bench_dh(provider, msec);
+ }
+#endif
+#if defined(BOTAN_HAS_ECDH)
+ else if(algo == "ECDH")
+ {
+ bench_ecdh(provider, msec);
+ }
+#endif
+#if defined(BOTAN_HAS_CURVE_25519)
+ else if(algo == "Curve25519")
+ {
+ bench_curve25519(provider, msec);
+ }
+#endif
+
+#if defined(BOTAN_HAS_NUMBERTHEORY)
+ else if(algo == "random_prime")
+ {
+ bench_random_prime(msec);
+ }
+#endif
+ else
+ {
+ if(verbose() || !using_defaults)
+ {
+ error_output() << "Unknown algorithm to benchmark '" << algo << "'\n";
+ }
+ }
+ }
+ }
+
+ private:
+
+ Botan::AutoSeeded_RNG m_rng;
+ Botan::RandomNumberGenerator& rng() { return m_rng; }
+
+ template<typename T>
+ using bench_fn = std::function<void (T&,
+ std::string,
+ std::chrono::milliseconds,
+ size_t)>;
+
+ template<typename T>
+ void bench_providers_of(const std::string& algo,
+ const std::string& provider, /* user request, if any */
+ const std::chrono::milliseconds runtime,
+ size_t buf_size,
+ bench_fn<T> bench_one)
+ {
+ for(auto&& prov : T::providers(algo))
+ {
+ if(provider == "" || provider == prov)
+ {
+ auto p = T::create(algo, prov);
+
+ if(p)
+ {
+ bench_one(*p, prov, runtime, buf_size);
+ }
+ }
+ }
+ }
+
+ void bench_block_cipher(Botan::BlockCipher& cipher,
+ const std::string& provider,
+ const std::chrono::milliseconds runtime,
+ size_t buf_size)
+ {
+ Botan::secure_vector<uint8_t> buffer = rng().random_vec(buf_size * 1024);
+
+ Timer encrypt_timer(cipher.name(), provider, "encrypt", buffer.size());
+ Timer decrypt_timer(cipher.name(), provider, "decrypt", buffer.size());
+
+ while(encrypt_timer.under(runtime) && decrypt_timer.under(runtime))
+ {
+ const Botan::SymmetricKey key(rng(), cipher.maximum_keylength());
+
+ cipher.set_key(key);
+ encrypt_timer.run([&] { cipher.encrypt(buffer); });
+ decrypt_timer.run([&] { cipher.decrypt(buffer); });
+ }
+
+ output() << encrypt_timer << decrypt_timer;
+ }
+
+ void bench_stream_cipher(Botan::StreamCipher& cipher,
+ const std::string& provider,
+ const std::chrono::milliseconds runtime,
+ size_t buf_size)
+ {
+ Botan::secure_vector<uint8_t> buffer = rng().random_vec(buf_size * 1024);
+
+ Timer encrypt_timer(cipher.name(), provider, "encrypt", buffer.size());
+
+ while(encrypt_timer.under(runtime))
+ {
+ const Botan::SymmetricKey key(rng(), cipher.maximum_keylength());
+ cipher.set_key(key);
+ encrypt_timer.run([&] { cipher.encipher(buffer); });
+ }
+
+ output() << encrypt_timer;
+ }
+
+ void bench_hash(Botan::HashFunction& hash,
+ const std::string& provider,
+ const std::chrono::milliseconds runtime,
+ size_t buf_size)
+ {
+ Botan::secure_vector<uint8_t> buffer = rng().random_vec(buf_size * 1024);
+
+ Timer timer(hash.name(), provider, "hashing", buffer.size());
+
+ while(timer.under(runtime))
+ {
+ timer.run([&] { hash.update(buffer); });
+ }
+
+ output() << timer;
+ }
+
+ void bench_mac(Botan::MessageAuthenticationCode& mac,
+ const std::string& provider,
+ const std::chrono::milliseconds runtime,
+ size_t buf_size)
+ {
+ Botan::secure_vector<uint8_t> buffer = rng().random_vec(buf_size * 1024);
+
+ Timer timer(mac.name(), provider, "processing", buffer.size());
+
+ while(timer.under(runtime))
+ {
+ const Botan::SymmetricKey key(rng(), mac.maximum_keylength());
+ mac.set_key(key);
+ timer.run([&] { mac.update(buffer); });
+ }
+
+ output() << timer;
+ }
+
+ void bench_cipher_mode(Botan::Cipher_Mode& enc,
+ Botan::Cipher_Mode& dec,
+ const std::chrono::milliseconds runtime,
+ size_t buf_size)
+ {
+ Botan::secure_vector<uint8_t> buffer = rng().random_vec(buf_size * 1024);
+
+ Timer encrypt_timer(enc.name(), "", "encrypt", buffer.size());
+ Timer decrypt_timer(enc.name(), "", "decrypt", buffer.size());
+
+ while(encrypt_timer.under(runtime) && decrypt_timer.under(runtime))
+ {
+ const Botan::SymmetricKey key(rng(), enc.key_spec().maximum_keylength());
+ const Botan::secure_vector<uint8_t> iv = rng().random_vec(enc.default_nonce_length());
+
+ enc.set_key(key);
+ dec.set_key(key);
+
+ enc.start(iv);
+ dec.start(iv);
+
+ // Must run in this order, or AEADs will reject the ciphertext
+ encrypt_timer.run([&] { enc.finish(buffer); });
+ decrypt_timer.run([&] { dec.finish(buffer); });
+ }
+
+ output() << encrypt_timer << decrypt_timer;
+ }
+
+#if defined(BOTAN_HAS_NUMBERTHEORY)
+ void bench_random_prime(const std::chrono::milliseconds runtime)
+ {
+ const size_t coprime = 65537; // simulates RSA key gen
+
+ for(size_t bits : { 1024, 1536 })
+ {
+ Timer genprime_timer("random_prime " + std::to_string(bits));
+ Timer is_prime_timer("is_prime " + std::to_string(bits));
+
+ while(genprime_timer.under(runtime) && is_prime_timer.under(runtime))
+ {
+ const Botan::BigInt p = genprime_timer.run([&] {
+ return Botan::random_prime(rng(), bits, coprime); });
+
+ const bool ok = is_prime_timer.run([&] {
+ return Botan::is_prime(p, rng(), 64, true);
+ });
+
+ if(!ok)
+ {
+ error_output() << "Generated prime " << p
+ << " which then failed primality test";
+ }
+
+ // Now test p+2, p+4, ... which may or may not be prime
+ for(size_t i = 2; i != 64; i += 2)
+ {
+ is_prime_timer.run([&] { Botan::is_prime(p, rng(), 64, true); });
+ }
+ }
+
+ output() << genprime_timer << is_prime_timer;
+ }
+ }
+#endif
+
+#if defined(BOTAN_HAS_PUBLIC_KEY_CRYPTO)
+ void bench_pk_enc(const Botan::Private_Key& key,
+ const std::string& nm,
+ const std::string& provider,
+ const std::string& padding,
+ std::chrono::milliseconds msec)
+ {
+ std::vector<uint8_t> plaintext, ciphertext;
+
+ Botan::PK_Encryptor_EME enc(key, padding, provider);
+ Botan::PK_Decryptor_EME dec(key, padding, provider);
+
+ Timer enc_timer(nm, provider, "encrypt");
+ Timer dec_timer(nm, provider, "decrypt");
+
+ while(enc_timer.under(msec) || dec_timer.under(msec))
+ {
+ // Generate a new random ciphertext to decrypt
+ if(ciphertext.empty() || enc_timer.under(msec))
+ {
+ plaintext = unlock(rng().random_vec(enc.maximum_input_size()));
+ ciphertext = enc_timer.run([&] { return enc.encrypt(plaintext, rng()); });
+ }
+
+ if(dec_timer.under(msec))
+ {
+ auto dec_pt = dec_timer.run([&] { return dec.decrypt(ciphertext); });
+
+ if(dec_pt != plaintext) // sanity check
+ {
+ error_output() << "Bad roundtrip in PK encrypt/decrypt bench\n";
+ }
+ }
+ }
+
+ output() << enc_timer;
+ output() << dec_timer;
+ }
+
+ void bench_pk_ka(const Botan::PK_Key_Agreement_Key& key1,
+ const Botan::PK_Key_Agreement_Key& key2,
+ const std::string& nm,
+ const std::string& provider,
+ const std::string& kdf,
+ std::chrono::milliseconds msec)
+ {
+ Botan::PK_Key_Agreement ka1(key1, kdf /*, provider */);
+ Botan::PK_Key_Agreement ka2(key2, kdf /*, provider */);
+
+ const std::vector<uint8_t> ka1_pub = key1.public_value();
+ const std::vector<uint8_t> ka2_pub = key2.public_value();
+
+ Timer ka_timer(nm, provider, "key agreements");
+
+ while(ka_timer.under(msec))
+ {
+ Botan::SymmetricKey key1 = ka_timer.run([&] { return ka1.derive_key(32, ka2_pub); });
+ Botan::SymmetricKey key2 = ka_timer.run([&] { return ka2.derive_key(32, ka1_pub); });
+
+ if(key1 != key2)
+ {
+ error_output() << "Key agreement mismatch in PK bench\n";
+ }
+ }
+
+ output() << ka_timer;
+ }
+
+ void bench_pk_sig(const Botan::Private_Key& key,
+ const std::string& nm,
+ const std::string& provider,
+ const std::string& padding,
+ std::chrono::milliseconds msec)
+ {
+ std::vector<uint8_t> message, signature, bad_signature;
+
+ Botan::PK_Signer sig(key, padding, Botan::IEEE_1363, provider);
+ Botan::PK_Verifier ver(key, padding, Botan::IEEE_1363, provider);
+
+ Timer sig_timer(nm, provider, "sign");
+ Timer ver_timer(nm, provider, "verify");
+
+ while(ver_timer.under(msec) || sig_timer.under(msec))
+ {
+ if(signature.empty() || sig_timer.under(msec))
+ {
+ /*
+ Length here is kind of arbitrary, but 48 bytes fits into a single
+ hash block so minimizes hashing overhead versus the PK op itself.
+ */
+ message = unlock(rng().random_vec(48));
+
+ signature = sig_timer.run([&] { return sig.sign_message(message, rng()); });
+
+ bad_signature = signature;
+ bad_signature[rng().next_byte() % bad_signature.size()] ^= rng().next_nonzero_byte();
+ }
+
+ if(ver_timer.under(msec))
+ {
+ const bool verified = ver_timer.run([&] {
+ return ver.verify_message(message, signature); });
+
+ if(!verified)
+ {
+ error_output() << "Correct signature rejected in PK signature bench\n";
+ }
+
+ const bool verified_bad = ver_timer.run([&] {
+ return ver.verify_message(message, bad_signature); });
+
+ if(verified_bad)
+ {
+ error_output() << "Bad signature accepted in PK signature bench\n";
+ }
+ }
+ }
+
+ output() << sig_timer;
+ output() << ver_timer;
+ }
+#endif
+
+#if defined(BOTAN_HAS_RSA)
+ void bench_rsa(const std::string& provider,
+ std::chrono::milliseconds msec)
+ {
+ for(size_t keylen : { 1024, 2048, 3072, 4096 })
+ {
+ const std::string nm = "RSA-" + std::to_string(keylen);
+
+ Timer keygen_timer(nm, provider, "keygen");
+
+ std::unique_ptr<Botan::Private_Key> key(keygen_timer.run([&] {
+ return new Botan::RSA_PrivateKey(rng(), keylen);
+ }));
+
+ output() << keygen_timer;
+
+ // Using PKCS #1 padding so OpenSSL provider can play along
+ bench_pk_enc(*key, nm, provider, "EME-PKCS1-v1_5", msec);
+ bench_pk_sig(*key, nm, provider, "EMSA-PKCS1-v1_5(SHA-1)", msec);
+ }
+ }
+#endif
+
+#if defined(BOTAN_HAS_ECDSA)
+ void bench_ecdsa(const std::string& provider,
+ std::chrono::milliseconds msec)
+ {
+ for(std::string grp : { "secp256r1", "secp384r1", "secp521r1" })
+ {
+ const std::string nm = "ECDSA-" + grp;
+
+ Timer keygen_timer(nm, provider, "keygen");
+
+ std::unique_ptr<Botan::Private_Key> key(keygen_timer.run([&] {
+ return new Botan::ECDSA_PrivateKey(rng(), grp);
+ }));
+
+ output() << keygen_timer;
+ bench_pk_sig(*key, nm, provider, "EMSA1(SHA-256)", msec);
+ }
+ }
+#endif
+
+#if defined(BOTAN_HAS_DIFFIE_HELLMAN)
+ void bench_dh(const std::string& provider,
+ std::chrono::milliseconds msec)
+ {
+ for(size_t bits : { 1024, 2048, 3072 })
+ {
+ const std::string grp = "modp/ietf/" + std::to_string(bits);
+ const std::string nm = "DH-" + std::to_string(bits);
+
+ Timer keygen_timer(nm, provider, "keygen");
+
+ std::unique_ptr<Botan::PK_Key_Agreement_Key> key1(keygen_timer.run([&] {
+ return new Botan::DH_PrivateKey(rng(), grp);
+ }));
+ std::unique_ptr<Botan::PK_Key_Agreement_Key> key2(keygen_timer.run([&] {
+ return new Botan::DH_PrivateKey(rng(), grp);
+ }));
+
+ output() << keygen_timer;
+
+ bench_pk_ka(*key1, *key2, nm, provider, "KDF2(SHA-256)", msec);
+ }
+ }
+#endif
+
+#if defined(BOTAN_HAS_ECDH)
+ void bench_ecdh(const std::string& provider,
+ std::chrono::milliseconds msec)
+ {
+ for(std::string grp : { "secp256r1", "secp384r1", "secp521r1" })
+ {
+ const std::string nm = "ECDH-" + grp;
+
+ Timer keygen_timer(nm, provider, "keygen");
+
+ std::unique_ptr<Botan::PK_Key_Agreement_Key> key1(keygen_timer.run([&] {
+ return new Botan::ECDH_PrivateKey(rng(), grp);
+ }));
+ std::unique_ptr<Botan::PK_Key_Agreement_Key> key2(keygen_timer.run([&] {
+ return new Botan::ECDH_PrivateKey(rng(), grp);
+ }));
+
+ output() << keygen_timer;
+
+ bench_pk_ka(*key1, *key2, nm, provider, "KDF2(SHA-256)", msec);
+ }
+ }
+#endif
+
+#if defined(BOTAN_HAS_CURVE_25519)
+ void bench_curve25519(const std::string& provider,
+ std::chrono::milliseconds msec)
+ {
+ const std::string nm = "Curve25519";
+
+ Timer keygen_timer(nm, provider, "keygen");
+
+ std::unique_ptr<Botan::PK_Key_Agreement_Key> key1(keygen_timer.run([&] {
+ return new Botan::Curve25519_PrivateKey(rng());
+ }));
+ std::unique_ptr<Botan::PK_Key_Agreement_Key> key2(keygen_timer.run([&] {
+ return new Botan::Curve25519_PrivateKey(rng());
+ }));
+
+ output() << keygen_timer;
+
+ bench_pk_ka(*key1, *key2, nm, provider, "KDF2(SHA-256)", msec);
+ }
+#endif
+
+
+ };
+
+BOTAN_REGISTER_COMMAND(Benchmark);
+
+}