aboutsummaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
authorlloyd <[email protected]>2012-06-17 18:36:55 +0000
committerlloyd <[email protected]>2012-06-17 18:36:55 +0000
commitaa858fa5e0b5127c1900574379a66f2668d85702 (patch)
treed37e7593526a8a0175b2680023e477a8a0f45c59 /src
parentf6a786d6cb3322833205aca9f3ca521a6a02772c (diff)
Use the extended Euclidean algorithm for computing the inverse for
Montgomery exponentiation as except for the very first division all operands are single words and thus we can assume we have a relatively fast division operation (and additionally working only with words avoids dynamic allocation).
Diffstat (limited to 'src')
-rw-r--r--src/math/numbertheory/powm_mnt.cpp67
1 files changed, 57 insertions, 10 deletions
diff --git a/src/math/numbertheory/powm_mnt.cpp b/src/math/numbertheory/powm_mnt.cpp
index 68c19a2f2..39cf690ce 100644
--- a/src/math/numbertheory/powm_mnt.cpp
+++ b/src/math/numbertheory/powm_mnt.cpp
@@ -11,6 +11,56 @@
namespace Botan {
+namespace {
+
+/*
+* Compute -input^-1 mod 2^MP_WORD_BITS. We are assured that the
+* inverse exists because input is odd (checked by checking that the
+* modulus is odd in the Montgomery_Exponentiator constructor, and
+* input is the low word of the modulus and thus also odd), and thus
+* input and 2^n are relatively prime.
+*/
+word monty_inverse(word input)
+ {
+ word b = input;
+ word x2 = 1, x1 = 0, y2 = 0, y1 = 1;
+
+ // First iteration, a = n+1
+ word q = bigint_divop(1, 0, b);
+ word r = (MP_WORD_MAX - q*b) + 1;
+ word x = x2 - q*x1;
+ word y = y2 - q*y1;
+
+ word a = b;
+ b = r;
+ x2 = x1;
+ x1 = x;
+ y2 = y1;
+ y1 = y;
+
+ while(b > 0)
+ {
+ q = a / b;
+ r = a - q*b;
+ x = x2 - q*x1;
+ y = y2 - q*y1;
+
+ a = b;
+ b = r;
+ x2 = x1;
+ x1 = x;
+ y2 = y1;
+ y1 = y;
+ }
+
+ // Now invert in addition space
+ y2 = (MP_WORD_MAX - y2) + 1;
+
+ return y2;
+ }
+
+}
+
/*
* Set the exponent
*/
@@ -116,20 +166,17 @@ BigInt Montgomery_Exponentiator::execute() const
* Montgomery_Exponentiator Constructor
*/
Montgomery_Exponentiator::Montgomery_Exponentiator(const BigInt& mod,
- Power_Mod::Usage_Hints hints)
+ Power_Mod::Usage_Hints hints) :
+ m_modulus(mod),
+ m_mod_words(m_modulus.sig_words()),
+ m_window_bits(1),
+ m_hints(hints)
{
// Montgomery reduction only works for positive odd moduli
- if(!mod.is_positive() || mod.is_even())
+ if(!m_modulus.is_positive() || m_modulus.is_even())
throw Invalid_Argument("Montgomery_Exponentiator: invalid modulus");
- m_window_bits = 0;
- m_hints = hints;
- m_modulus = mod;
-
- m_mod_words = m_modulus.sig_words();
-
- const BigInt b = BigInt(1) << BOTAN_MP_WORD_BITS;
- m_mod_prime = (b - inverse_mod(m_modulus.word_at(0), b)).word_at(0);
+ m_mod_prime = monty_inverse(mod.word_at(0));
const BigInt r(BigInt::Power2, m_mod_words * BOTAN_MP_WORD_BITS);
m_R_mod = r % m_modulus;