diff options
author | lloyd <[email protected]> | 2008-07-07 02:06:03 +0000 |
---|---|---|
committer | lloyd <[email protected]> | 2008-07-07 02:06:03 +0000 |
commit | 45558407b8d28c8f6099239f16c87034917b4a61 (patch) | |
tree | faa0850cf59b490b859c62369d8cd11fdd3bf14d /src | |
parent | 879343baccf98c23d3b3f9a3faba64b65df31eac (diff) |
Add an implementation of the Shanks-Tonelli algorithm, which is used to
find square roots modulo a prime. Contributed by FlexSecure GmbH
Diffstat (limited to 'src')
-rw-r--r-- | src/ressol.cpp | 82 |
1 files changed, 82 insertions, 0 deletions
diff --git a/src/ressol.cpp b/src/ressol.cpp new file mode 100644 index 000000000..e0967eae4 --- /dev/null +++ b/src/ressol.cpp @@ -0,0 +1,82 @@ +/************************************************* +* Shanks-Tonnelli (RESSOL) Source File * +* (C) 2007-2008 Falko Strenzke, FlexSecure GmbH * +* (C) 2008 Jack Lloyd * +*************************************************/ + +#include <botan/numthry.h> +#include <botan/reducer.h> + +#include <iostream> + +namespace Botan { + +/************************************************* +* Shanks-Tonnelli algorithm * +*************************************************/ +BigInt ressol(const BigInt& a, const BigInt& p) + { + if(a < 0) + throw Invalid_Argument("ressol(): a to solve for must be positive"); + if(p <= 1) + throw Invalid_Argument("ressol(): prime must be > 1"); + + if(a == 0) + return 0; + if(p == 2) + return a; + + if(jacobi(a, p) != 1) // not a quadratic residue + return -1; + + if(p % 4 == 3) + return power_mod(a, ((p+1) >> 2), p); + + u32bit s = low_zero_bits(p - 1); + BigInt q = p >> s; + + q -= 1; + q >>= 1; + + Modular_Reducer mod_p(p); + + BigInt r = power_mod(a, q, p); + BigInt n = mod_p.multiply(a, mod_p.square(r)); + r = mod_p.multiply(r, a); + + if(n == 1) + return r; + + // find random non quadratic residue z + BigInt z = 2; + while(jacobi(z, p) == 1) // while z quadratic residue + ++z; + + BigInt c = power_mod(z, (q << 1) + 1, p); + + while(n > 1) + { + q = n; + + u32bit i = 0; + while(q != 1) + { + q = mod_p.square(q); + ++i; + } + u32bit t = s; + + if(t <= i) + return -1; + + c = power_mod(c, BigInt(BigInt::Power2, t-i-1), p); + r = mod_p.multiply(r, c); + c = mod_p.square(c); + n = mod_p.multiply(n, c); + s = i; + } + + return r; + } + +} |