aboutsummaryrefslogtreecommitdiffstats
path: root/src/utils/simd_32/simd_sse.h
diff options
context:
space:
mode:
authorlloyd <[email protected]>2009-10-26 17:37:44 +0000
committerlloyd <[email protected]>2009-10-26 17:37:44 +0000
commit49896908c8a7893586271e353c431bb91b5215a8 (patch)
treeead9a7549b339dd2fd884bf039d1b88d0c3c9393 /src/utils/simd_32/simd_sse.h
parent3b2eef9bd141e70b7dfe90fe8cc57d6561733fbc (diff)
Add a wrapper for a set of SSE2 operations with convenient syntax for 4x32
operations. Also add a pure scalar code version. Convert Serpent to use this new interface, and add an implementation of XTEA in SIMD. The wrappers plus the scalar version allow SIMD-ish code to work on all platforms. This is often a win due to better ILP being visible to the processor (as with the recent XTEA optimizations). Only real danger is register starvation, mostly an issue on x86 these days. So it may (or may not) be a win to consolidate the standard C++ versions and the SIMD versions together. Future work: - Add AltiVec/VMX version - Maybe also for ARM's NEON extension? Less pressing, I would think. - Convert SHA-1 code to use SIMD_32 - Add XTEA SIMD decryption (currently only encrypt) - Change SSE2 engine to SIMD_engine - Modify configure.py to set BOTAN_TARGET_CPU_HAS_[SSE2|ALTIVEC|NEON|XXX] macros
Diffstat (limited to 'src/utils/simd_32/simd_sse.h')
-rw-r--r--src/utils/simd_32/simd_sse.h141
1 files changed, 141 insertions, 0 deletions
diff --git a/src/utils/simd_32/simd_sse.h b/src/utils/simd_32/simd_sse.h
new file mode 100644
index 000000000..d9135f1c7
--- /dev/null
+++ b/src/utils/simd_32/simd_sse.h
@@ -0,0 +1,141 @@
+/**
+* Lightweight wrappers for SSE2 intrinsics for 32-bit operations
+*/
+
+#ifndef BOTAN_SIMD_SSE_H__
+#define BOTAN_SIMD_SSE_H__
+
+#include <botan/types.h>
+#include <emmintrin.h>
+
+namespace Botan {
+
+class SIMD_SSE2
+ {
+ public:
+ SIMD_SSE2(const u32bit B[4])
+ {
+ reg = _mm_loadu_si128((const __m128i*)B);
+ }
+
+ SIMD_SSE2(u32bit B0, u32bit B1, u32bit B2, u32bit B3)
+ {
+ reg = _mm_set_epi32(B0, B1, B2, B3);
+ }
+
+ SIMD_SSE2(u32bit B)
+ {
+ reg = _mm_set1_epi32(B);
+ }
+
+ static SIMD_SSE2 load_le(const void* in)
+ {
+ return _mm_loadu_si128((const __m128i*)in);
+ }
+
+ static SIMD_SSE2 load_be(const void* in)
+ {
+ return SIMD_SSE2(_mm_loadu_si128((const __m128i*)in)).bswap();
+ }
+
+ void store_le(byte out[]) const
+ {
+ _mm_storeu_si128((__m128i*)out, reg);
+ }
+
+ void store_be(byte out[]) const
+ {
+ bswap().store_le(out);
+ }
+
+ void rotate_left(u32bit rot)
+ {
+ reg = _mm_or_si128(_mm_slli_epi32(reg, rot),
+ _mm_srli_epi32(reg, 32-rot));
+ }
+
+ void rotate_right(u32bit rot)
+ {
+ reg = _mm_or_si128(_mm_srli_epi32(reg, rot),
+ _mm_slli_epi32(reg, 32-rot));
+ }
+
+ void operator+=(const SIMD_SSE2& other)
+ {
+ reg = _mm_add_epi32(reg, other.reg);
+ }
+
+ SIMD_SSE2 operator+(const SIMD_SSE2& other) const
+ {
+ return _mm_add_epi32(reg, other.reg);
+ }
+
+ void operator^=(const SIMD_SSE2& other)
+ {
+ reg = _mm_xor_si128(reg, other.reg);
+ }
+
+ SIMD_SSE2 operator^(const SIMD_SSE2& other) const
+ {
+ return _mm_xor_si128(reg, other.reg);
+ }
+
+ void operator|=(const SIMD_SSE2& other)
+ {
+ reg = _mm_or_si128(reg, other.reg);
+ }
+
+ void operator&=(const SIMD_SSE2& other)
+ {
+ reg = _mm_and_si128(reg, other.reg);
+ }
+
+ SIMD_SSE2 operator<<(u32bit shift) const
+ {
+ return _mm_slli_epi32(reg, shift);
+ }
+
+ SIMD_SSE2 operator>>(u32bit shift) const
+ {
+ return _mm_srli_epi32(reg, shift);
+ }
+
+ SIMD_SSE2 operator~() const
+ {
+ static const __m128i all_ones = _mm_set1_epi32(0xFFFFFFFF);
+ return _mm_xor_si128(reg, all_ones);
+ }
+
+ static void transpose(SIMD_SSE2& B0, SIMD_SSE2& B1,
+ SIMD_SSE2& B2, SIMD_SSE2& B3)
+ {
+ __m128i T0 = _mm_unpacklo_epi32(B0.reg, B1.reg);
+ __m128i T1 = _mm_unpacklo_epi32(B2.reg, B3.reg);
+ __m128i T2 = _mm_unpackhi_epi32(B0.reg, B1.reg);
+ __m128i T3 = _mm_unpackhi_epi32(B2.reg, B3.reg);
+ B0.reg = _mm_unpacklo_epi64(T0, T1);
+ B1.reg = _mm_unpackhi_epi64(T0, T1);
+ B2.reg = _mm_unpacklo_epi64(T2, T3);
+ B3.reg = _mm_unpackhi_epi64(T2, T3);
+ }
+
+ private:
+ SIMD_SSE2(__m128i in) { reg = in; }
+
+ SIMD_SSE2 bswap() const
+ {
+ __m128i T = reg;
+
+ T = _mm_shufflehi_epi16(T, _MM_SHUFFLE(2, 3, 0, 1));
+ T = _mm_shufflelo_epi16(T, _MM_SHUFFLE(2, 3, 0, 1));
+
+ return _mm_or_si128(_mm_srli_epi16(T, 8),
+ _mm_slli_epi16(T, 8));
+ }
+
+ __m128i reg;
+ };
+
+}
+
+#endif