diff options
author | lloyd <[email protected]> | 2010-03-13 04:54:04 +0000 |
---|---|---|
committer | lloyd <[email protected]> | 2010-03-13 04:54:04 +0000 |
commit | 1d07b3d21c917376bfec79332c01619938e0f0aa (patch) | |
tree | 68d5fa988ea7afae427d93b4f7b0ad2c962350cd /src/math | |
parent | b027160b916ba9a67de5e2f34df63bcdc02f3987 (diff) |
Use Montgomery reduction for the important parts of PointGFp, using
code cobbled together from 1.8/InSiTo. Faster than it was in 1.9.4, but
still quite slow.
Diffstat (limited to 'src/math')
-rw-r--r-- | src/math/numbertheory/point_gfp.cpp | 149 | ||||
-rw-r--r-- | src/math/numbertheory/point_gfp.h | 3 |
2 files changed, 78 insertions, 74 deletions
diff --git a/src/math/numbertheory/point_gfp.cpp b/src/math/numbertheory/point_gfp.cpp index 062fd5c0f..4711988dc 100644 --- a/src/math/numbertheory/point_gfp.cpp +++ b/src/math/numbertheory/point_gfp.cpp @@ -11,6 +11,7 @@ #include <botan/numthry.h> #include <botan/mp_asm.h> #include <botan/mp_asmi.h> +#include <botan/mp_core.h> namespace Botan { @@ -25,6 +26,7 @@ void inner_montg_mult_sos(word result[], t.grow_to(2*s+1); // t = a_bar * b_bar + //bigint_simple_mul(t, a_bar, s, b_bar, s); for (u32bit i=0; i<s; i++) { word C = 0; @@ -42,6 +44,7 @@ void inner_montg_mult_sos(word result[], } // ??? +#if 1 for (u32bit i=0; i<s; i++) { // word word_madd2(word a, word b, word c, word* carry) @@ -105,36 +108,34 @@ void inner_montg_mult_sos(word result[], result[i] = u[i]; } } - } - -void compute_montgomery_params(const BigInt& prime, - BigInt& r, - BigInt& r_inv, - BigInt& p_dash) - { - if(!prime.is_odd()) - throw Internal_Error("PointGFp: Only operates with odd primes"); - - r = 1; - r <<= prime.sig_words() * BOTAN_MP_WORD_BITS; +#else - r_inv = inverse_mod(r, prime); + bigint_monty_redc(&t[0], t.size(), + n, s, + n_dash[0]); - p_dash = ((r * r_inv) - 1) / prime; + copy_mem(&result[0], &t[0], s); +#endif } } PointGFp::PointGFp(const CurveGFp& curve) : - curve(curve), coord_x(0), coord_y(1), coord_z(0) + curve(curve), + coord_x(0), + coord_y(curve.get_r()), + coord_z(0) { - compute_montgomery_params(curve.get_p(), r, r_inv, p_dash); } PointGFp::PointGFp(const CurveGFp& curve, const BigInt& x, const BigInt& y) : - curve(curve), coord_x(x), coord_y(y), coord_z(1) + curve(curve) { - compute_montgomery_params(curve.get_p(), r, r_inv, p_dash); + const Modular_Reducer& mod_p = curve.mod_p(); + + coord_x = mod_p.multiply(curve.get_r(), x); + coord_y = mod_p.multiply(curve.get_r(), y); + coord_z = curve.get_r(); } BigInt PointGFp::monty_mult(const BigInt& a, const BigInt& b) @@ -147,22 +148,32 @@ BigInt PointGFp::monty_mult(const BigInt& a, const BigInt& b) const BigInt& p = curve.get_p(); const u32bit s = p.sig_words(); + const BigInt& p_dash = curve.get_p_dash(); + result.grow_to(s); - if(a.size() >= s && b.size() >= s) + if(a > 0 && b > 0 && a < p && b < p && a.size() >= s && b.size() >= s) { inner_montg_mult_sos(result.get_reg(), a.data(), b.data(), p.data(), p_dash.data(), s); } else { + const Modular_Reducer& mod_p = curve.mod_p(); + BigInt a2 = a; BigInt b2 = b; a2.grow_to(s); b2.grow_to(s); + + a2 = mod_p.reduce(a2); + b2 = mod_p.reduce(b2); + inner_montg_mult_sos(result.get_reg(), a2.data(), b2.data(), p.data(), p_dash.data(), s); } + + return result; } // arithmetic operators @@ -179,15 +190,16 @@ PointGFp& PointGFp::operator+=(const PointGFp& rhs) const Modular_Reducer& mod_p = curve.mod_p(); - BigInt rhs_z2 = mod_p.square(rhs.coord_z); - BigInt U1 = mod_p.multiply(coord_x, rhs_z2); - BigInt S1 = mod_p.multiply(coord_y, mod_p.multiply(rhs.coord_z, rhs_z2)); + BigInt rhs_z2 = monty_mult(rhs.coord_z, rhs.coord_z); + BigInt U1 = monty_mult(coord_x, rhs_z2); + BigInt S1 = monty_mult(coord_y, monty_mult(rhs.coord_z, rhs_z2)); - BigInt lhs_z2 = mod_p.square(coord_z); - BigInt U2 = mod_p.multiply(rhs.coord_x, lhs_z2); - BigInt S2 = mod_p.multiply(rhs.coord_y, mod_p.multiply(coord_z, lhs_z2)); + BigInt lhs_z2 = monty_mult(coord_z, coord_z); + BigInt U2 = monty_mult(rhs.coord_x, lhs_z2); + BigInt S2 = monty_mult(rhs.coord_y, monty_mult(coord_z, lhs_z2)); BigInt H = mod_p.reduce(U2 - U1); + BigInt r = mod_p.reduce(S2 - S1); if(H.is_zero()) @@ -202,15 +214,18 @@ PointGFp& PointGFp::operator+=(const PointGFp& rhs) return *this; } - U2 = mod_p.square(H); + U2 = monty_mult(H, H); + + S2 = monty_mult(U2, H); - S2 = mod_p.multiply(U2, H); + U2 = monty_mult(U1, U2); - U2 = mod_p.multiply(U1, U2); + BigInt x = mod_p.reduce(monty_mult(r, r) - S2 - U2*2); - BigInt x = mod_p.reduce(mod_p.square(r) - S2 - mod_p.multiply(2, U2)); - BigInt y = mod_p.reduce(mod_p.multiply(r, (U2-x)) - mod_p.multiply(S1, S2)); - BigInt z = mod_p.multiply(mod_p.multiply(coord_z, rhs.coord_z), H); + U2 = mod_p.reduce(U2 - x); + + BigInt y = monty_mult(r, U2) - monty_mult(S1, S2); + BigInt z = monty_mult(monty_mult(coord_z, rhs.coord_z), H); coord_x = x; coord_y = y; @@ -267,26 +282,6 @@ PointGFp& PointGFp::operator*=(const BigInt& scalar) H += P; } - if(!H.is_zero()) // cannot convert if H == O - { - /** - * Convert H to an equivalent point with z == 1, thus x and y - * correspond to their affine coordinates - */ - if(H.coord_z != 1) - { - const Modular_Reducer& mod_p = curve.mod_p(); - - BigInt z_inv = inverse_mod(H.coord_z, curve.get_p()); - - BigInt z_inv_2 = mod_p.square(z_inv); - - H.coord_x = mod_p.multiply(H.coord_x, z_inv_2); - H.coord_y = mod_p.multiply(H.coord_y, mod_p.multiply(z_inv, z_inv_2)); - H.coord_z = 1; - } - } - *this = H; return *this; } @@ -304,22 +299,24 @@ void PointGFp::mult2() const Modular_Reducer& mod_p = curve.mod_p(); - BigInt y_2 = mod_p.square(coord_y); + BigInt y_2 = monty_mult(coord_y, coord_y); + + BigInt S = mod_p.reduce(4 * monty_mult(coord_x, y_2)); - BigInt S = mod_p.multiply(4, mod_p.multiply(coord_x, y_2)); + BigInt z4 = monty_mult(coord_z, coord_z); + z4 = monty_mult(z4, z4); - BigInt a_z4 = mod_p.multiply(curve.get_a(), - mod_p.square(mod_p.square(coord_z))); + BigInt a_z4 = monty_mult(mod_p.multiply(curve.get_r(), curve.get_a()), z4); - BigInt M = mod_p.reduce(a_z4 + 3 * mod_p.square(coord_x)); + BigInt M = mod_p.reduce(a_z4 + 3 * monty_mult(coord_x, coord_x)); - BigInt x = mod_p.reduce(mod_p.square(M) - mod_p.multiply(2, S)); + BigInt x = monty_mult(M, M) - 2*S; - BigInt U = mod_p.multiply(8, mod_p.square(y_2)); + BigInt U = 8 * monty_mult(y_2, y_2); - BigInt y = mod_p.reduce(mod_p.multiply(M, S - x) - U); + BigInt y = monty_mult(M, S - x) - U; - BigInt z = mod_p.multiply(2, mod_p.multiply(coord_y, coord_z)); + BigInt z = 2 * monty_mult(coord_y, coord_z); coord_x = x; coord_y = y; @@ -333,8 +330,11 @@ BigInt PointGFp::get_affine_x() const const Modular_Reducer& mod_p = curve.mod_p(); - BigInt z2 = mod_p.square(coord_z); - return mod_p.multiply(coord_x, inverse_mod(z2, curve.get_p())); + BigInt x = mod_p.multiply(curve.get_r_inv(), coord_x); + BigInt z = mod_p.multiply(curve.get_r_inv(), coord_z); + + BigInt z2 = mod_p.square(z); + return mod_p.multiply(x, inverse_mod(z2, curve.get_p())); } BigInt PointGFp::get_affine_y() const @@ -344,8 +344,11 @@ BigInt PointGFp::get_affine_y() const const Modular_Reducer& mod_p = curve.mod_p(); - BigInt z3 = mod_p.cube(coord_z); - return mod_p.multiply(coord_y, inverse_mod(z3, curve.get_p())); + BigInt y = mod_p.multiply(curve.get_r_inv(), coord_y); + BigInt z = mod_p.multiply(curve.get_r_inv(), coord_z); + + BigInt z3 = mod_p.cube(z); + return mod_p.multiply(y, inverse_mod(z3, curve.get_p())); } void PointGFp::check_invariants() const @@ -362,21 +365,25 @@ void PointGFp::check_invariants() const const Modular_Reducer& mod_p = curve.mod_p(); - BigInt y2 = mod_p.square(coord_y); - BigInt x3 = mod_p.cube(coord_x); + BigInt x = mod_p.multiply(curve.get_r_inv(), coord_x); + BigInt y = mod_p.multiply(curve.get_r_inv(), coord_y); + BigInt z = mod_p.multiply(curve.get_r_inv(), coord_z); + + BigInt y2 = mod_p.square(y); + BigInt x3 = mod_p.cube(x); - BigInt ax = mod_p.multiply(coord_x, curve.get_a()); + BigInt ax = mod_p.multiply(x, curve.get_a()); - if(coord_z == 1) + if(z == 1) { if(mod_p.reduce(x3 + ax + curve.get_b()) != y2) throw Illegal_Point("Invalid ECP point: y^2 != x^3 + a*x + b"); } - BigInt z2 = mod_p.square(coord_z); - BigInt z3 = mod_p.multiply(coord_z, z2); + BigInt z2 = mod_p.square(z); + BigInt z3 = mod_p.multiply(z, z2); - BigInt ax_z4 = mod_p.multiply(mod_p.multiply(z3, coord_z), ax); + BigInt ax_z4 = mod_p.multiply(mod_p.multiply(z3, z), ax); BigInt b_z6 = mod_p.multiply(curve.get_b(), mod_p.square(z3)); diff --git a/src/math/numbertheory/point_gfp.h b/src/math/numbertheory/point_gfp.h index 34f761cca..c86e61381 100644 --- a/src/math/numbertheory/point_gfp.h +++ b/src/math/numbertheory/point_gfp.h @@ -152,9 +152,6 @@ class BOTAN_DLL PointGFp CurveGFp curve; BigInt coord_x, coord_y, coord_z; - - // Values for Montgomery operations - BigInt r, r_inv, p_dash; }; // relational operators |