aboutsummaryrefslogtreecommitdiffstats
path: root/src/math/numbertheory/powm_mnt.cpp
diff options
context:
space:
mode:
authorlloyd <[email protected]>2014-01-01 21:20:55 +0000
committerlloyd <[email protected]>2014-01-01 21:20:55 +0000
commit197dc467dec28a04c3b2f30da7cef122dfbb13e9 (patch)
treecdbd3ddaec051c72f0a757db461973d90c37b97a /src/math/numbertheory/powm_mnt.cpp
parent62faac373c07cfe10bc8c309e89ebdd30d8e5eaa (diff)
Shuffle things around. Add NIST X.509 test to build.
Diffstat (limited to 'src/math/numbertheory/powm_mnt.cpp')
-rw-r--r--src/math/numbertheory/powm_mnt.cpp142
1 files changed, 0 insertions, 142 deletions
diff --git a/src/math/numbertheory/powm_mnt.cpp b/src/math/numbertheory/powm_mnt.cpp
deleted file mode 100644
index a3eac1f83..000000000
--- a/src/math/numbertheory/powm_mnt.cpp
+++ /dev/null
@@ -1,142 +0,0 @@
-/*
-* Montgomery Exponentiation
-* (C) 1999-2010,2012 Jack Lloyd
-*
-* Distributed under the terms of the Botan license
-*/
-
-#include <botan/internal/def_powm.h>
-#include <botan/numthry.h>
-#include <botan/internal/mp_core.h>
-
-namespace Botan {
-
-/*
-* Set the exponent
-*/
-void Montgomery_Exponentiator::set_exponent(const BigInt& exp)
- {
- m_exp = exp;
- m_exp_bits = exp.bits();
- }
-
-/*
-* Set the base
-*/
-void Montgomery_Exponentiator::set_base(const BigInt& base)
- {
- m_window_bits = Power_Mod::window_bits(m_exp.bits(), base.bits(), m_hints);
-
- m_g.resize((1 << m_window_bits));
-
- BigInt z(BigInt::Positive, 2 * (m_mod_words + 1));
- secure_vector<word> workspace(z.size());
-
- m_g[0] = 1;
-
- bigint_monty_mul(z.mutable_data(), z.size(),
- m_g[0].data(), m_g[0].size(), m_g[0].sig_words(),
- m_R2_mod.data(), m_R2_mod.size(), m_R2_mod.sig_words(),
- m_modulus.data(), m_mod_words, m_mod_prime,
- &workspace[0]);
-
- m_g[0] = z;
-
- m_g[1] = (base >= m_modulus) ? (base % m_modulus) : base;
-
- bigint_monty_mul(z.mutable_data(), z.size(),
- m_g[1].data(), m_g[1].size(), m_g[1].sig_words(),
- m_R2_mod.data(), m_R2_mod.size(), m_R2_mod.sig_words(),
- m_modulus.data(), m_mod_words, m_mod_prime,
- &workspace[0]);
-
- m_g[1] = z;
-
- const BigInt& x = m_g[1];
- const size_t x_sig = x.sig_words();
-
- for(size_t i = 2; i != m_g.size(); ++i)
- {
- const BigInt& y = m_g[i-1];
- const size_t y_sig = y.sig_words();
-
- bigint_monty_mul(z.mutable_data(), z.size(),
- x.data(), x.size(), x_sig,
- y.data(), y.size(), y_sig,
- m_modulus.data(), m_mod_words, m_mod_prime,
- &workspace[0]);
-
- m_g[i] = z;
- }
- }
-
-/*
-* Compute the result
-*/
-BigInt Montgomery_Exponentiator::execute() const
- {
- const size_t exp_nibbles = (m_exp_bits + m_window_bits - 1) / m_window_bits;
-
- BigInt x = m_R_mod;
-
- const size_t z_size = 2*(m_mod_words + 1);
-
- BigInt z(BigInt::Positive, z_size);
- secure_vector<word> workspace(z_size);
-
- for(size_t i = exp_nibbles; i > 0; --i)
- {
- for(size_t k = 0; k != m_window_bits; ++k)
- {
- bigint_monty_sqr(z.mutable_data(), z_size,
- x.data(), x.size(), x.sig_words(),
- m_modulus.data(), m_mod_words, m_mod_prime,
- &workspace[0]);
-
- x = z;
- }
-
- const u32bit nibble = m_exp.get_substring(m_window_bits*(i-1), m_window_bits);
-
- const BigInt& y = m_g[nibble];
-
- bigint_monty_mul(z.mutable_data(), z_size,
- x.data(), x.size(), x.sig_words(),
- y.data(), y.size(), y.sig_words(),
- m_modulus.data(), m_mod_words, m_mod_prime,
- &workspace[0]);
-
- x = z;
- }
-
- x.grow_to(2*m_mod_words + 1);
-
- bigint_monty_redc(x.mutable_data(),
- m_modulus.data(), m_mod_words, m_mod_prime,
- &workspace[0]);
-
- return x;
- }
-
-/*
-* Montgomery_Exponentiator Constructor
-*/
-Montgomery_Exponentiator::Montgomery_Exponentiator(const BigInt& mod,
- Power_Mod::Usage_Hints hints) :
- m_modulus(mod),
- m_mod_words(m_modulus.sig_words()),
- m_window_bits(1),
- m_hints(hints)
- {
- // Montgomery reduction only works for positive odd moduli
- if(!m_modulus.is_positive() || m_modulus.is_even())
- throw Invalid_Argument("Montgomery_Exponentiator: invalid modulus");
-
- m_mod_prime = monty_inverse(mod.word_at(0));
-
- const BigInt r = BigInt::power_of_2(m_mod_words * BOTAN_MP_WORD_BITS);
- m_R_mod = r % m_modulus;
- m_R2_mod = (m_R_mod * m_R_mod) % m_modulus;
- }
-
-}