aboutsummaryrefslogtreecommitdiffstats
path: root/src/math/numbertheory/point_gfp.cpp
diff options
context:
space:
mode:
authorlloyd <[email protected]>2010-02-25 21:15:29 +0000
committerlloyd <[email protected]>2010-02-25 21:15:29 +0000
commit2208225cb9f448023b30ff42d4bda7cc4d5808f5 (patch)
tree2d085591f221d5208c4e7ed0643d22d940bcfa91 /src/math/numbertheory/point_gfp.cpp
parent387dddde76c76d6d35a1758b175bda8cb554d08f (diff)
Move contents of gfpmath to numbertheory. Adjust dependencies.
Diffstat (limited to 'src/math/numbertheory/point_gfp.cpp')
-rw-r--r--src/math/numbertheory/point_gfp.cpp423
1 files changed, 423 insertions, 0 deletions
diff --git a/src/math/numbertheory/point_gfp.cpp b/src/math/numbertheory/point_gfp.cpp
new file mode 100644
index 000000000..06c42d18c
--- /dev/null
+++ b/src/math/numbertheory/point_gfp.cpp
@@ -0,0 +1,423 @@
+/*
+* Arithmetic for point groups of elliptic curves over GF(p)
+*
+* (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke
+* 2008-2010 Jack Lloyd
+*
+* Distributed under the terms of the Botan license
+*/
+
+#include <botan/point_gfp.h>
+#include <botan/numthry.h>
+
+namespace Botan {
+
+namespace {
+
+BigInt decompress_point(bool yMod2,
+ const BigInt& x,
+ const CurveGFp& curve)
+ {
+ BigInt xpow3 = x * x * x;
+
+ BigInt g = curve.get_a() * x;
+ g += xpow3;
+ g += curve.get_b();
+ g = g % curve.get_p();
+
+ BigInt z = ressol(g, curve.get_p());
+
+ if(z < 0)
+ throw Illegal_Point("error during decompression");
+
+ if(z.get_bit(0) != yMod2)
+ z = curve.get_p() - z;
+
+ return z;
+ }
+
+}
+
+// arithmetic operators
+PointGFp& PointGFp::operator+=(const PointGFp& rhs)
+ {
+ if(rhs.is_zero())
+ return *this;
+
+ if(is_zero())
+ {
+ *this = rhs;
+ return *this;
+ }
+
+ const Modular_Reducer& mod_p = curve.mod_p();
+
+ BigInt rhs_z2 = mod_p.square(rhs.coord_z);
+ BigInt U1 = mod_p.multiply(coord_x, rhs_z2);
+ BigInt S1 = mod_p.multiply(coord_y, mod_p.multiply(rhs.coord_z, rhs_z2));
+
+ BigInt lhs_z2 = mod_p.square(coord_z);
+ BigInt U2 = mod_p.multiply(rhs.coord_x, lhs_z2);
+ BigInt S2 = mod_p.multiply(rhs.coord_y, mod_p.multiply(coord_z, lhs_z2));
+
+ BigInt H = mod_p.reduce(U2 - U1);
+ BigInt r = mod_p.reduce(S2 - S1);
+
+ if(H.is_zero())
+ {
+ if(r.is_zero())
+ {
+ mult2_in_place();
+ return *this;
+ }
+
+ *this = PointGFp(curve); // setting myself to zero
+ return *this;
+ }
+
+ U2 = mod_p.square(H);
+
+ S2 = mod_p.multiply(U2, H);
+
+ U2 = mod_p.multiply(U1, U2);
+
+ BigInt x = mod_p.reduce(mod_p.square(r) - S2 - mod_p.multiply(2, U2));
+ BigInt y = mod_p.reduce(mod_p.multiply(r, (U2-x)) - mod_p.multiply(S1, S2));
+ BigInt z = mod_p.multiply(mod_p.multiply(coord_z, rhs.coord_z), H);
+
+ coord_x = x;
+ coord_y = y;
+ coord_z = z;
+
+ return *this;
+ }
+
+PointGFp& PointGFp::operator-=(const PointGFp& rhs)
+ {
+ PointGFp minus_rhs = PointGFp(rhs).negate();
+
+ if(is_zero())
+ *this = minus_rhs;
+ else
+ *this += minus_rhs;
+
+ return *this;
+ }
+
+PointGFp& PointGFp::operator*=(const BigInt& scalar)
+ {
+ if(scalar.abs() <= 2) // special cases for small values
+ {
+ u32bit value = scalar.abs().to_u32bit();
+
+ if(value == 0)
+ *this = PointGFp(curve); // set to zero point
+ else if(value == 1)
+ {
+ if(scalar.is_negative())
+ this->negate();
+ }
+ else if(value == 2)
+ {
+ this->mult2_in_place();
+ if(scalar.is_negative())
+ this->negate();
+ }
+
+ return *this;
+ }
+
+ PointGFp H(this->curve); // create as zero
+ PointGFp P(*this);
+
+ if(scalar.is_negative())
+ P.negate();
+
+ for(int i = scalar.bits() - 1; i >= 0; --i)
+ {
+ H.mult2_in_place();
+ if(scalar.get_bit(i))
+ H += P;
+ }
+
+ if(!H.is_zero()) // cannot convert if H == O
+ {
+ /**
+ * Convert H to an equivalent point with z == 1, thus x and y
+ * correspond to their affine coordinates
+ */
+ if(H.coord_z != 1)
+ {
+ const Modular_Reducer& mod_p = curve.mod_p();
+
+ BigInt z_inv = inverse_mod(H.coord_z, curve.get_p());
+
+ BigInt z_inv_2 = mod_p.square(z_inv);
+
+ H.coord_x = mod_p.multiply(H.coord_x, z_inv_2);
+ H.coord_y = mod_p.multiply(H.coord_y, mod_p.multiply(z_inv, z_inv_2));
+ H.coord_z = 1;
+ }
+ }
+
+ *this = H;
+ return *this;
+ }
+
+PointGFp& PointGFp::negate()
+ {
+ if(!is_zero())
+ coord_y = curve.get_p() - coord_y;
+
+ return *this;
+ }
+
+// *this *= 2
+void PointGFp::mult2_in_place()
+ {
+ if(is_zero())
+ return;
+ else if(coord_y.is_zero())
+ {
+ *this = PointGFp(curve); // setting myself to zero
+ return;
+ }
+
+ const Modular_Reducer& mod_p = curve.mod_p();
+
+ BigInt y_2 = mod_p.square(coord_y);
+
+ BigInt S = mod_p.multiply(4, mod_p.multiply(coord_x, y_2));
+
+ BigInt a_z4 = mod_p.multiply(curve.get_a(),
+ mod_p.square(mod_p.square(coord_z)));
+
+ BigInt M = mod_p.reduce(a_z4 + 3 * mod_p.square(coord_x));
+
+ BigInt x = mod_p.reduce(mod_p.square(M) - mod_p.multiply(2, S));
+
+ BigInt y = mod_p.square(y_2);
+
+ BigInt z = mod_p.multiply(2, mod_p.reduce(y + y));
+
+ BigInt U = mod_p.reduce(z + z);
+
+ y = mod_p.reduce(mod_p.multiply(M, S - x) - U);
+
+ z = mod_p.multiply(2, mod_p.multiply(coord_y, coord_z));
+
+ coord_x = x;
+ coord_y = y;
+ coord_z = z;
+ }
+
+BigInt PointGFp::get_affine_x() const
+ {
+ if(is_zero())
+ throw Illegal_Transformation("cannot convert to affine");
+
+ const Modular_Reducer& mod_p = curve.mod_p();
+
+ BigInt z2 = mod_p.square(coord_z);
+ return mod_p.multiply(coord_x, inverse_mod(z2, curve.get_p()));
+ }
+
+BigInt PointGFp::get_affine_y() const
+ {
+ if(is_zero())
+ throw Illegal_Transformation("cannot convert to affine");
+
+ const Modular_Reducer& mod_p = curve.mod_p();
+
+ BigInt z3 = mod_p.cube(coord_z);
+ return mod_p.multiply(coord_y, inverse_mod(z3, curve.get_p()));
+ }
+
+// Is this the point at infinity?
+bool PointGFp::is_zero() const
+ {
+ return(coord_x.is_zero() && coord_z.is_zero());
+ }
+
+void PointGFp::check_invariants() const
+ {
+ /*
+ Is the point still on the curve?? (If everything is correct, the
+ point is always on its curve; then the function will return
+ silently. If Oskar managed to corrupt this object's state, then it
+ will throw an exception.)
+ */
+
+ if(is_zero())
+ return;
+
+ const Modular_Reducer& mod_p = curve.mod_p();
+
+ BigInt y2 = mod_p.square(coord_y);
+ BigInt x3 = mod_p.cube(coord_x);
+
+ BigInt ax = mod_p.multiply(coord_x, curve.get_a());
+
+ if(coord_z == 1)
+ {
+ if(mod_p.reduce(x3 + ax + curve.get_b()) != y2)
+ throw Illegal_Point("Invalid ECP point: y^2 != x^3 + a*x + b");
+ }
+
+ BigInt z2 = mod_p.square(coord_z);
+ BigInt z3 = mod_p.multiply(coord_z, z2);
+
+ BigInt ax_z4 = mod_p.multiply(mod_p.multiply(z3, coord_z), ax);
+
+ BigInt b_z6 = mod_p.multiply(curve.get_b(), mod_p.square(z3));
+
+ if(y2 != mod_p.reduce(x3 + ax_z4 + b_z6))
+ throw Illegal_Point("Invalid ECP point: y^2 != x^3 + a*x*z^4 + b*z^6");
+ }
+
+// swaps the states of *this and other, does not throw!
+void PointGFp::swap(PointGFp& other)
+ {
+ curve.swap(other.curve);
+ coord_x.swap(other.coord_x);
+ coord_y.swap(other.coord_y);
+ coord_z.swap(other.coord_z);
+ }
+
+bool PointGFp::operator==(const PointGFp& other) const
+ {
+ return (coord_x == other.coord_x &&
+ coord_y == other.coord_y &&
+ coord_z == other.coord_z &&
+ get_curve() == other.get_curve());
+ }
+
+// arithmetic operators
+PointGFp operator+(const PointGFp& lhs, PointGFp const& rhs)
+ {
+ PointGFp tmp(lhs);
+ return tmp += rhs;
+ }
+
+PointGFp operator-(const PointGFp& lhs, PointGFp const& rhs)
+ {
+ PointGFp tmp(lhs);
+ return tmp -= rhs;
+ }
+
+PointGFp operator-(const PointGFp& lhs)
+ {
+ return PointGFp(lhs).negate();
+ }
+
+PointGFp operator*(const BigInt& scalar, const PointGFp& point)
+ {
+ PointGFp result(point);
+ return result *= scalar;
+ }
+
+PointGFp operator*(const PointGFp& point, const BigInt& scalar)
+ {
+ PointGFp result(point);
+ return result *= scalar;
+ }
+
+// encoding and decoding
+SecureVector<byte> EC2OSP(const PointGFp& point, byte format)
+ {
+ if(point.is_zero())
+ return SecureVector<byte>(1); // single 0 byte
+
+ const u32bit p_bytes = point.get_curve().get_p().bytes();
+
+ BigInt x = point.get_affine_x();
+ BigInt y = point.get_affine_y();
+
+ SecureVector<byte> bX = BigInt::encode_1363(x, p_bytes);
+ SecureVector<byte> bY = BigInt::encode_1363(y, p_bytes);
+
+ if(format == PointGFp::UNCOMPRESSED)
+ {
+ SecureVector<byte> result(2*p_bytes+1);
+ result[0] = 4;
+
+ result.copy(1, bX.begin(), p_bytes);
+ result.copy(p_bytes+1, bY.begin(), p_bytes);
+ return result;
+ }
+ else if(format == PointGFp::COMPRESSED)
+ {
+ SecureVector<byte> result(p_bytes+1);
+ result[0] = 2;
+
+ result.copy(1, bX.begin(), bX.size());
+
+ if(y.get_bit(0))
+ result[0] |= 1;
+
+ return result;
+ }
+ else if(format == PointGFp::HYBRID)
+ {
+ SecureVector<byte> result(2*p_bytes+1);
+ result[0] = 6;
+
+ result.copy(1, bX.begin(), bX.size());
+ result.copy(p_bytes+1, bY.begin(), bY.size());
+
+ if(y.get_bit(0))
+ result[0] |= 1;
+
+ return result;
+ }
+ else
+ throw Invalid_Argument("illegal point encoding format specification");
+ }
+
+PointGFp OS2ECP(const MemoryRegion<byte>& os, const CurveGFp& curve)
+ {
+ if(os.size() == 1 && os[0] == 0)
+ return PointGFp(curve); // return zero
+
+ const byte pc = os[0];
+
+ BigInt x, y;
+
+ if(pc == 2 || pc == 3)
+ {
+ //compressed form
+ x = BigInt::decode(&os[1], os.size() - 1);
+
+ bool yMod2 = ((pc & 0x01) == 1);
+ y = decompress_point(yMod2, x, curve);
+ }
+ else if(pc == 4)
+ {
+ // uncompressed form
+ u32bit l = (os.size() - 1) / 2;
+
+ x = BigInt::decode(&os[1], l);
+ y = BigInt::decode(&os[l+1], l);
+ }
+ else if(pc == 6 || pc == 7)
+ {
+ // hybrid form
+ u32bit l = (os.size() - 1) / 2;
+
+ x = BigInt::decode(&os[1], l);
+ y = BigInt::decode(&os[l+1], l);
+
+ bool yMod2 = ((pc & 0x01) == 1);
+
+ if(decompress_point(yMod2, x, curve) != y)
+ throw Illegal_Point("OS2ECP: Decoding error in hybrid format");
+ }
+ else
+ throw Invalid_Argument("OS2ECP: Unknown format type");
+
+ PointGFp result(curve, x, y);
+ result.check_invariants();
+ return result;
+ }
+
+}