diff options
author | Jack Lloyd <[email protected]> | 2019-10-17 20:31:46 -0400 |
---|---|---|
committer | Jack Lloyd <[email protected]> | 2019-10-17 20:31:46 -0400 |
commit | 539bade1f5ff1f89cdd3416c52dd1f38fc9713d1 (patch) | |
tree | 032cd6c1e982ad12a4f739495a38cbb4502f6ab0 /src/lib | |
parent | b542191cdfe71fbea4ff2ba8e7af55a97b2054f5 (diff) |
Fix coprimality check during prime generation
Diffstat (limited to 'src/lib')
-rw-r--r-- | src/lib/math/numbertheory/make_prm.cpp | 48 |
1 files changed, 21 insertions, 27 deletions
diff --git a/src/lib/math/numbertheory/make_prm.cpp b/src/lib/math/numbertheory/make_prm.cpp index 799835263..642faaa93 100644 --- a/src/lib/math/numbertheory/make_prm.cpp +++ b/src/lib/math/numbertheory/make_prm.cpp @@ -79,9 +79,9 @@ BigInt random_prime(RandomNumberGenerator& rng, size_t equiv, size_t modulo, size_t prob) { - if(coprime.is_negative()) + if(coprime.is_negative() || (!coprime.is_zero() && coprime.is_even()) || coprime.bits() >= bits) { - throw Invalid_Argument("random_prime: coprime must be >= 0"); + throw Invalid_Argument("random_prime: invalid coprime"); } if(modulo == 0) { @@ -149,16 +149,8 @@ BigInt random_prime(RandomNumberGenerator& rng, Prime_Sieve sieve(p, bits); - size_t counter = 0; - while(true) + for(size_t attempt = 0; attempt <= MAX_ATTEMPTS; ++attempt) { - ++counter; - - if(counter > MAX_ATTEMPTS) - { - break; // don't try forever, choose a new starting point - } - p += modulo; sieve.step(modulo); @@ -169,21 +161,31 @@ BigInt random_prime(RandomNumberGenerator& rng, Modular_Reducer mod_p(p); + /* + First do a single M-R iteration to quickly elimate most non-primes, + before doing the coprimality check which is expensive + */ if(is_miller_rabin_probable_prime(p, mod_p, rng, 1) == false) continue; if(coprime > 1) { /* - * Check if gcd(p - 1, coprime) != 1 by computing the inverse. The - * gcd algorithm is not constant time, but modular inverse is (for - * odd modulus anyway). This avoids a side channel attack against RSA - * key generation, though RSA keygen should be using generate_rsa_prime. + * Check if gcd(p - 1, coprime) != 1 by attempting to compute a + * modular inverse. We are assured coprime is odd (since if it was + * even, it would always have a common factor with p - 1), so + * take off the factors of 2 from (p-1) then compute the inverse + * of coprime modulo that integer. */ - if(ct_inverse_mod_odd_modulus(p - 1, coprime).is_zero()) + BigInt p1 = p - 1; + p1 >>= low_zero_bits(p1); + if(ct_inverse_mod_odd_modulus(coprime, p1).is_zero()) { + BOTAN_DEBUG_ASSERT(gcd(p - 1, coprime) > 1); continue; } + + BOTAN_DEBUG_ASSERT(gcd(p - 1, coprime) == 1); } if(p.bits() > bits) @@ -234,16 +236,8 @@ BigInt generate_rsa_prime(RandomNumberGenerator& keygen_rng, const word step = 2; - size_t counter = 0; - while(true) + for(size_t attempt = 0; attempt <= MAX_ATTEMPTS; ++attempt) { - ++counter; - - if(counter > MAX_ATTEMPTS) - { - break; // don't try forever, choose a new starting point - } - p += step; sieve.step(step); @@ -277,11 +271,11 @@ BigInt generate_rsa_prime(RandomNumberGenerator& keygen_rng, p1 >>= low_zero_bits(p1); if(ct_inverse_mod_odd_modulus(coprime, p1).is_zero()) { - BOTAN_DEBUG_ASSERT(gcd(p1, coprime) > 1); + BOTAN_DEBUG_ASSERT(gcd(p - 1, coprime) > 1); continue; } - BOTAN_DEBUG_ASSERT(gcd(p1, coprime) == 1); + BOTAN_DEBUG_ASSERT(gcd(p - 1, coprime) == 1); if(p.bits() > bits) break; |