aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/utils/loadstor.h
diff options
context:
space:
mode:
authorlloyd <[email protected]>2014-01-10 03:41:59 +0000
committerlloyd <[email protected]>2014-01-10 03:41:59 +0000
commit6894dca64c04936d07048c0e8cbf7e25858548c3 (patch)
tree5d572bfde9fe667dab14e3f04b5285a85d8acd95 /src/lib/utils/loadstor.h
parent9efa3be92442afb3d0b69890a36c7f122df18eda (diff)
Move lib into src
Diffstat (limited to 'src/lib/utils/loadstor.h')
-rw-r--r--src/lib/utils/loadstor.h627
1 files changed, 627 insertions, 0 deletions
diff --git a/src/lib/utils/loadstor.h b/src/lib/utils/loadstor.h
new file mode 100644
index 000000000..29e00592a
--- /dev/null
+++ b/src/lib/utils/loadstor.h
@@ -0,0 +1,627 @@
+/*
+* Load/Store Operators
+* (C) 1999-2007 Jack Lloyd
+* 2007 Yves Jerschow
+*
+* Distributed under the terms of the Botan license
+*/
+
+#ifndef BOTAN_LOAD_STORE_H__
+#define BOTAN_LOAD_STORE_H__
+
+#include <botan/types.h>
+#include <botan/bswap.h>
+#include <botan/get_byte.h>
+#include <cstring>
+
+#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
+
+#if defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN)
+
+#define BOTAN_ENDIAN_N2B(x) (x)
+#define BOTAN_ENDIAN_B2N(x) (x)
+
+#define BOTAN_ENDIAN_N2L(x) reverse_bytes(x)
+#define BOTAN_ENDIAN_L2N(x) reverse_bytes(x)
+
+#elif defined(BOTAN_TARGET_CPU_IS_LITTLE_ENDIAN)
+
+#define BOTAN_ENDIAN_N2L(x) (x)
+#define BOTAN_ENDIAN_L2N(x) (x)
+
+#define BOTAN_ENDIAN_N2B(x) reverse_bytes(x)
+#define BOTAN_ENDIAN_B2N(x) reverse_bytes(x)
+
+#endif
+
+#endif
+
+namespace Botan {
+
+/**
+* Make a u16bit from two bytes
+* @param i0 the first byte
+* @param i1 the second byte
+* @return i0 || i1
+*/
+inline u16bit make_u16bit(byte i0, byte i1)
+ {
+ return ((static_cast<u16bit>(i0) << 8) | i1);
+ }
+
+/**
+* Make a u32bit from four bytes
+* @param i0 the first byte
+* @param i1 the second byte
+* @param i2 the third byte
+* @param i3 the fourth byte
+* @return i0 || i1 || i2 || i3
+*/
+inline u32bit make_u32bit(byte i0, byte i1, byte i2, byte i3)
+ {
+ return ((static_cast<u32bit>(i0) << 24) |
+ (static_cast<u32bit>(i1) << 16) |
+ (static_cast<u32bit>(i2) << 8) |
+ (static_cast<u32bit>(i3)));
+ }
+
+/**
+* Make a u32bit from eight bytes
+* @param i0 the first byte
+* @param i1 the second byte
+* @param i2 the third byte
+* @param i3 the fourth byte
+* @param i4 the fifth byte
+* @param i5 the sixth byte
+* @param i6 the seventh byte
+* @param i7 the eighth byte
+* @return i0 || i1 || i2 || i3 || i4 || i5 || i6 || i7
+*/
+inline u64bit make_u64bit(byte i0, byte i1, byte i2, byte i3,
+ byte i4, byte i5, byte i6, byte i7)
+ {
+ return ((static_cast<u64bit>(i0) << 56) |
+ (static_cast<u64bit>(i1) << 48) |
+ (static_cast<u64bit>(i2) << 40) |
+ (static_cast<u64bit>(i3) << 32) |
+ (static_cast<u64bit>(i4) << 24) |
+ (static_cast<u64bit>(i5) << 16) |
+ (static_cast<u64bit>(i6) << 8) |
+ (static_cast<u64bit>(i7)));
+ }
+
+/**
+* Load a big-endian word
+* @param in a pointer to some bytes
+* @param off an offset into the array
+* @return off'th T of in, as a big-endian value
+*/
+template<typename T>
+inline T load_be(const byte in[], size_t off)
+ {
+ in += off * sizeof(T);
+ T out = 0;
+ for(size_t i = 0; i != sizeof(T); ++i)
+ out = (out << 8) | in[i];
+ return out;
+ }
+
+/**
+* Load a little-endian word
+* @param in a pointer to some bytes
+* @param off an offset into the array
+* @return off'th T of in, as a litte-endian value
+*/
+template<typename T>
+inline T load_le(const byte in[], size_t off)
+ {
+ in += off * sizeof(T);
+ T out = 0;
+ for(size_t i = 0; i != sizeof(T); ++i)
+ out = (out << 8) | in[sizeof(T)-1-i];
+ return out;
+ }
+
+/**
+* Load a big-endian u16bit
+* @param in a pointer to some bytes
+* @param off an offset into the array
+* @return off'th u16bit of in, as a big-endian value
+*/
+template<>
+inline u16bit load_be<u16bit>(const byte in[], size_t off)
+ {
+#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
+ return BOTAN_ENDIAN_N2B(*(reinterpret_cast<const u16bit*>(in) + off));
+#else
+ in += off * sizeof(u16bit);
+ return make_u16bit(in[0], in[1]);
+#endif
+ }
+
+/**
+* Load a little-endian u16bit
+* @param in a pointer to some bytes
+* @param off an offset into the array
+* @return off'th u16bit of in, as a little-endian value
+*/
+template<>
+inline u16bit load_le<u16bit>(const byte in[], size_t off)
+ {
+#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
+ return BOTAN_ENDIAN_N2L(*(reinterpret_cast<const u16bit*>(in) + off));
+#else
+ in += off * sizeof(u16bit);
+ return make_u16bit(in[1], in[0]);
+#endif
+ }
+
+/**
+* Load a big-endian u32bit
+* @param in a pointer to some bytes
+* @param off an offset into the array
+* @return off'th u32bit of in, as a big-endian value
+*/
+template<>
+inline u32bit load_be<u32bit>(const byte in[], size_t off)
+ {
+#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
+ return BOTAN_ENDIAN_N2B(*(reinterpret_cast<const u32bit*>(in) + off));
+#else
+ in += off * sizeof(u32bit);
+ return make_u32bit(in[0], in[1], in[2], in[3]);
+#endif
+ }
+
+/**
+* Load a little-endian u32bit
+* @param in a pointer to some bytes
+* @param off an offset into the array
+* @return off'th u32bit of in, as a little-endian value
+*/
+template<>
+inline u32bit load_le<u32bit>(const byte in[], size_t off)
+ {
+#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
+ return BOTAN_ENDIAN_N2L(*(reinterpret_cast<const u32bit*>(in) + off));
+#else
+ in += off * sizeof(u32bit);
+ return make_u32bit(in[3], in[2], in[1], in[0]);
+#endif
+ }
+
+/**
+* Load a big-endian u64bit
+* @param in a pointer to some bytes
+* @param off an offset into the array
+* @return off'th u64bit of in, as a big-endian value
+*/
+template<>
+inline u64bit load_be<u64bit>(const byte in[], size_t off)
+ {
+#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
+ return BOTAN_ENDIAN_N2B(*(reinterpret_cast<const u64bit*>(in) + off));
+#else
+ in += off * sizeof(u64bit);
+ return make_u64bit(in[0], in[1], in[2], in[3],
+ in[4], in[5], in[6], in[7]);
+#endif
+ }
+
+/**
+* Load a little-endian u64bit
+* @param in a pointer to some bytes
+* @param off an offset into the array
+* @return off'th u64bit of in, as a little-endian value
+*/
+template<>
+inline u64bit load_le<u64bit>(const byte in[], size_t off)
+ {
+#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
+ return BOTAN_ENDIAN_N2L(*(reinterpret_cast<const u64bit*>(in) + off));
+#else
+ in += off * sizeof(u64bit);
+ return make_u64bit(in[7], in[6], in[5], in[4],
+ in[3], in[2], in[1], in[0]);
+#endif
+ }
+
+/**
+* Load two little-endian words
+* @param in a pointer to some bytes
+* @param x0 where the first word will be written
+* @param x1 where the second word will be written
+*/
+template<typename T>
+inline void load_le(const byte in[], T& x0, T& x1)
+ {
+ x0 = load_le<T>(in, 0);
+ x1 = load_le<T>(in, 1);
+ }
+
+/**
+* Load four little-endian words
+* @param in a pointer to some bytes
+* @param x0 where the first word will be written
+* @param x1 where the second word will be written
+* @param x2 where the third word will be written
+* @param x3 where the fourth word will be written
+*/
+template<typename T>
+inline void load_le(const byte in[],
+ T& x0, T& x1, T& x2, T& x3)
+ {
+ x0 = load_le<T>(in, 0);
+ x1 = load_le<T>(in, 1);
+ x2 = load_le<T>(in, 2);
+ x3 = load_le<T>(in, 3);
+ }
+
+/**
+* Load eight little-endian words
+* @param in a pointer to some bytes
+* @param x0 where the first word will be written
+* @param x1 where the second word will be written
+* @param x2 where the third word will be written
+* @param x3 where the fourth word will be written
+* @param x4 where the fifth word will be written
+* @param x5 where the sixth word will be written
+* @param x6 where the seventh word will be written
+* @param x7 where the eighth word will be written
+*/
+template<typename T>
+inline void load_le(const byte in[],
+ T& x0, T& x1, T& x2, T& x3,
+ T& x4, T& x5, T& x6, T& x7)
+ {
+ x0 = load_le<T>(in, 0);
+ x1 = load_le<T>(in, 1);
+ x2 = load_le<T>(in, 2);
+ x3 = load_le<T>(in, 3);
+ x4 = load_le<T>(in, 4);
+ x5 = load_le<T>(in, 5);
+ x6 = load_le<T>(in, 6);
+ x7 = load_le<T>(in, 7);
+ }
+
+/**
+* Load a variable number of little-endian words
+* @param out the output array of words
+* @param in the input array of bytes
+* @param count how many words are in in
+*/
+template<typename T>
+inline void load_le(T out[],
+ const byte in[],
+ size_t count)
+ {
+#if defined(BOTAN_TARGET_CPU_HAS_KNOWN_ENDIANNESS)
+ std::memcpy(out, in, sizeof(T)*count);
+
+#if defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN)
+ const size_t blocks = count - (count % 4);
+ const size_t left = count - blocks;
+
+ for(size_t i = 0; i != blocks; i += 4)
+ bswap_4(out + i);
+
+ for(size_t i = 0; i != left; ++i)
+ out[blocks+i] = reverse_bytes(out[blocks+i]);
+#endif
+
+#else
+ for(size_t i = 0; i != count; ++i)
+ out[i] = load_le<T>(in, i);
+#endif
+ }
+
+/**
+* Load two big-endian words
+* @param in a pointer to some bytes
+* @param x0 where the first word will be written
+* @param x1 where the second word will be written
+*/
+template<typename T>
+inline void load_be(const byte in[], T& x0, T& x1)
+ {
+ x0 = load_be<T>(in, 0);
+ x1 = load_be<T>(in, 1);
+ }
+
+/**
+* Load four big-endian words
+* @param in a pointer to some bytes
+* @param x0 where the first word will be written
+* @param x1 where the second word will be written
+* @param x2 where the third word will be written
+* @param x3 where the fourth word will be written
+*/
+template<typename T>
+inline void load_be(const byte in[],
+ T& x0, T& x1, T& x2, T& x3)
+ {
+ x0 = load_be<T>(in, 0);
+ x1 = load_be<T>(in, 1);
+ x2 = load_be<T>(in, 2);
+ x3 = load_be<T>(in, 3);
+ }
+
+/**
+* Load eight big-endian words
+* @param in a pointer to some bytes
+* @param x0 where the first word will be written
+* @param x1 where the second word will be written
+* @param x2 where the third word will be written
+* @param x3 where the fourth word will be written
+* @param x4 where the fifth word will be written
+* @param x5 where the sixth word will be written
+* @param x6 where the seventh word will be written
+* @param x7 where the eighth word will be written
+*/
+template<typename T>
+inline void load_be(const byte in[],
+ T& x0, T& x1, T& x2, T& x3,
+ T& x4, T& x5, T& x6, T& x7)
+ {
+ x0 = load_be<T>(in, 0);
+ x1 = load_be<T>(in, 1);
+ x2 = load_be<T>(in, 2);
+ x3 = load_be<T>(in, 3);
+ x4 = load_be<T>(in, 4);
+ x5 = load_be<T>(in, 5);
+ x6 = load_be<T>(in, 6);
+ x7 = load_be<T>(in, 7);
+ }
+
+/**
+* Load a variable number of big-endian words
+* @param out the output array of words
+* @param in the input array of bytes
+* @param count how many words are in in
+*/
+template<typename T>
+inline void load_be(T out[],
+ const byte in[],
+ size_t count)
+ {
+#if defined(BOTAN_TARGET_CPU_HAS_KNOWN_ENDIANNESS)
+ std::memcpy(out, in, sizeof(T)*count);
+
+#if defined(BOTAN_TARGET_CPU_IS_LITTLE_ENDIAN)
+ const size_t blocks = count - (count % 4);
+ const size_t left = count - blocks;
+
+ for(size_t i = 0; i != blocks; i += 4)
+ bswap_4(out + i);
+
+ for(size_t i = 0; i != left; ++i)
+ out[blocks+i] = reverse_bytes(out[blocks+i]);
+#endif
+
+#else
+ for(size_t i = 0; i != count; ++i)
+ out[i] = load_be<T>(in, i);
+#endif
+ }
+
+/**
+* Store a big-endian u16bit
+* @param in the input u16bit
+* @param out the byte array to write to
+*/
+inline void store_be(u16bit in, byte out[2])
+ {
+#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
+ *reinterpret_cast<u16bit*>(out) = BOTAN_ENDIAN_B2N(in);
+#else
+ out[0] = get_byte(0, in);
+ out[1] = get_byte(1, in);
+#endif
+ }
+
+/**
+* Store a little-endian u16bit
+* @param in the input u16bit
+* @param out the byte array to write to
+*/
+inline void store_le(u16bit in, byte out[2])
+ {
+#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
+ *reinterpret_cast<u16bit*>(out) = BOTAN_ENDIAN_L2N(in);
+#else
+ out[0] = get_byte(1, in);
+ out[1] = get_byte(0, in);
+#endif
+ }
+
+/**
+* Store a big-endian u32bit
+* @param in the input u32bit
+* @param out the byte array to write to
+*/
+inline void store_be(u32bit in, byte out[4])
+ {
+#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
+ *reinterpret_cast<u32bit*>(out) = BOTAN_ENDIAN_B2N(in);
+#else
+ out[0] = get_byte(0, in);
+ out[1] = get_byte(1, in);
+ out[2] = get_byte(2, in);
+ out[3] = get_byte(3, in);
+#endif
+ }
+
+/**
+* Store a little-endian u32bit
+* @param in the input u32bit
+* @param out the byte array to write to
+*/
+inline void store_le(u32bit in, byte out[4])
+ {
+#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
+ *reinterpret_cast<u32bit*>(out) = BOTAN_ENDIAN_L2N(in);
+#else
+ out[0] = get_byte(3, in);
+ out[1] = get_byte(2, in);
+ out[2] = get_byte(1, in);
+ out[3] = get_byte(0, in);
+#endif
+ }
+
+/**
+* Store a big-endian u64bit
+* @param in the input u64bit
+* @param out the byte array to write to
+*/
+inline void store_be(u64bit in, byte out[8])
+ {
+#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
+ *reinterpret_cast<u64bit*>(out) = BOTAN_ENDIAN_B2N(in);
+#else
+ out[0] = get_byte(0, in);
+ out[1] = get_byte(1, in);
+ out[2] = get_byte(2, in);
+ out[3] = get_byte(3, in);
+ out[4] = get_byte(4, in);
+ out[5] = get_byte(5, in);
+ out[6] = get_byte(6, in);
+ out[7] = get_byte(7, in);
+#endif
+ }
+
+/**
+* Store a little-endian u64bit
+* @param in the input u64bit
+* @param out the byte array to write to
+*/
+inline void store_le(u64bit in, byte out[8])
+ {
+#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
+ *reinterpret_cast<u64bit*>(out) = BOTAN_ENDIAN_L2N(in);
+#else
+ out[0] = get_byte(7, in);
+ out[1] = get_byte(6, in);
+ out[2] = get_byte(5, in);
+ out[3] = get_byte(4, in);
+ out[4] = get_byte(3, in);
+ out[5] = get_byte(2, in);
+ out[6] = get_byte(1, in);
+ out[7] = get_byte(0, in);
+#endif
+ }
+
+/**
+* Store two little-endian words
+* @param out the output byte array
+* @param x0 the first word
+* @param x1 the second word
+*/
+template<typename T>
+inline void store_le(byte out[], T x0, T x1)
+ {
+ store_le(x0, out + (0 * sizeof(T)));
+ store_le(x1, out + (1 * sizeof(T)));
+ }
+
+/**
+* Store two big-endian words
+* @param out the output byte array
+* @param x0 the first word
+* @param x1 the second word
+*/
+template<typename T>
+inline void store_be(byte out[], T x0, T x1)
+ {
+ store_be(x0, out + (0 * sizeof(T)));
+ store_be(x1, out + (1 * sizeof(T)));
+ }
+
+/**
+* Store four little-endian words
+* @param out the output byte array
+* @param x0 the first word
+* @param x1 the second word
+* @param x2 the third word
+* @param x3 the fourth word
+*/
+template<typename T>
+inline void store_le(byte out[], T x0, T x1, T x2, T x3)
+ {
+ store_le(x0, out + (0 * sizeof(T)));
+ store_le(x1, out + (1 * sizeof(T)));
+ store_le(x2, out + (2 * sizeof(T)));
+ store_le(x3, out + (3 * sizeof(T)));
+ }
+
+/**
+* Store four big-endian words
+* @param out the output byte array
+* @param x0 the first word
+* @param x1 the second word
+* @param x2 the third word
+* @param x3 the fourth word
+*/
+template<typename T>
+inline void store_be(byte out[], T x0, T x1, T x2, T x3)
+ {
+ store_be(x0, out + (0 * sizeof(T)));
+ store_be(x1, out + (1 * sizeof(T)));
+ store_be(x2, out + (2 * sizeof(T)));
+ store_be(x3, out + (3 * sizeof(T)));
+ }
+
+/**
+* Store eight little-endian words
+* @param out the output byte array
+* @param x0 the first word
+* @param x1 the second word
+* @param x2 the third word
+* @param x3 the fourth word
+* @param x4 the fifth word
+* @param x5 the sixth word
+* @param x6 the seventh word
+* @param x7 the eighth word
+*/
+template<typename T>
+inline void store_le(byte out[], T x0, T x1, T x2, T x3,
+ T x4, T x5, T x6, T x7)
+ {
+ store_le(x0, out + (0 * sizeof(T)));
+ store_le(x1, out + (1 * sizeof(T)));
+ store_le(x2, out + (2 * sizeof(T)));
+ store_le(x3, out + (3 * sizeof(T)));
+ store_le(x4, out + (4 * sizeof(T)));
+ store_le(x5, out + (5 * sizeof(T)));
+ store_le(x6, out + (6 * sizeof(T)));
+ store_le(x7, out + (7 * sizeof(T)));
+ }
+
+/**
+* Store eight big-endian words
+* @param out the output byte array
+* @param x0 the first word
+* @param x1 the second word
+* @param x2 the third word
+* @param x3 the fourth word
+* @param x4 the fifth word
+* @param x5 the sixth word
+* @param x6 the seventh word
+* @param x7 the eighth word
+*/
+template<typename T>
+inline void store_be(byte out[], T x0, T x1, T x2, T x3,
+ T x4, T x5, T x6, T x7)
+ {
+ store_be(x0, out + (0 * sizeof(T)));
+ store_be(x1, out + (1 * sizeof(T)));
+ store_be(x2, out + (2 * sizeof(T)));
+ store_be(x3, out + (3 * sizeof(T)));
+ store_be(x4, out + (4 * sizeof(T)));
+ store_be(x5, out + (5 * sizeof(T)));
+ store_be(x6, out + (6 * sizeof(T)));
+ store_be(x7, out + (7 * sizeof(T)));
+ }
+
+}
+
+#endif