diff options
author | René Korthaus <[email protected]> | 2015-12-23 11:52:19 +0100 |
---|---|---|
committer | Jack Lloyd <[email protected]> | 2016-01-08 19:09:51 -0500 |
commit | d22bc10cd4f67924acd82bcd46a31e3de3b20ce3 (patch) | |
tree | 58459585e6675cd799b6ef5900be026825cd6f9d /src/lib/pubkey/rsa | |
parent | 2fbfdd7e5afb5e888fd8c0b56c6df09e2bdeaca7 (diff) |
Mass-prefix member vars with m_
Diffstat (limited to 'src/lib/pubkey/rsa')
-rw-r--r-- | src/lib/pubkey/rsa/rsa.cpp | 48 |
1 files changed, 24 insertions, 24 deletions
diff --git a/src/lib/pubkey/rsa/rsa.cpp b/src/lib/pubkey/rsa/rsa.cpp index 57fab94c5..8d75d4a29 100644 --- a/src/lib/pubkey/rsa/rsa.cpp +++ b/src/lib/pubkey/rsa/rsa.cpp @@ -27,19 +27,19 @@ RSA_PrivateKey::RSA_PrivateKey(RandomNumberGenerator& rng, if(exp < 3 || exp % 2 == 0) throw Invalid_Argument(algo_name() + ": Invalid encryption exponent"); - e = exp; + m_e = exp; do { - p = random_prime(rng, (bits + 1) / 2, e); - q = random_prime(rng, bits - p.bits(), e); - n = p * q; - } while(n.bits() != bits); + m_p = random_prime(rng, (bits + 1) / 2, m_e); + m_q = random_prime(rng, bits - m_p.bits(), m_e); + m_n = m_p * m_q; + } while(m_n.bits() != bits); - d = inverse_mod(e, lcm(p - 1, q - 1)); - d1 = d % (p - 1); - d2 = d % (q - 1); - c = inverse_mod(q, p); + m_d = inverse_mod(m_e, lcm(m_p - 1, m_q - 1)); + m_d1 = m_d % (m_p - 1); + m_d2 = m_d % (m_q - 1); + m_c = inverse_mod(m_q, m_p); gen_check(rng); } @@ -55,7 +55,7 @@ bool RSA_PrivateKey::check_key(RandomNumberGenerator& rng, bool strong) const if(!strong) return true; - if((e * d) % lcm(p - 1, q - 1) != 1) + if((m_e * m_d) % lcm(m_p - 1, m_q - 1) != 1) return false; return KeyPair::signature_consistency_check(rng, *this, "EMSA4(SHA-1)"); @@ -69,25 +69,25 @@ namespace { class RSA_Private_Operation { protected: - size_t get_max_input_bits() const { return (n.bits() - 1); } + size_t get_max_input_bits() const { return (m_n.bits() - 1); } RSA_Private_Operation(const RSA_PrivateKey& rsa) : - n(rsa.get_n()), - q(rsa.get_q()), - c(rsa.get_c()), + m_n(rsa.get_n()), + m_q(rsa.get_q()), + m_c(rsa.get_c()), m_powermod_e_n(rsa.get_e(), rsa.get_n()), m_powermod_d1_p(rsa.get_d1(), rsa.get_p()), m_powermod_d2_q(rsa.get_d2(), rsa.get_q()), m_mod_p(rsa.get_p()), - m_blinder(n, + m_blinder(m_n, [this](const BigInt& k) { return m_powermod_e_n(k); }, - [this](const BigInt& k) { return inverse_mod(k, n); }) + [this](const BigInt& k) { return inverse_mod(k, m_n); }) { } BigInt blinded_private_op(const BigInt& m) const { - if(m >= n) + if(m >= m_n) throw Invalid_Argument("RSA private op - input is too large"); return m_blinder.unblind(private_op(m_blinder.blind(m))); @@ -99,14 +99,14 @@ class RSA_Private_Operation BigInt j2 = m_powermod_d2_q(m); BigInt j1 = future_j1.get(); - j1 = m_mod_p.reduce(sub_mul(j1, j2, c)); + j1 = m_mod_p.reduce(sub_mul(j1, j2, m_c)); - return mul_add(j1, q, j2); + return mul_add(j1, m_q, j2); } - const BigInt& n; - const BigInt& q; - const BigInt& c; + const BigInt& m_n; + const BigInt& m_q; + const BigInt& m_c; Fixed_Exponent_Power_Mod m_powermod_e_n, m_powermod_d1_p, m_powermod_d2_q; Modular_Reducer m_mod_p; Blinder m_blinder; @@ -133,7 +133,7 @@ class RSA_Signature_Operation : public PK_Ops::Signature_with_EMSA, const BigInt x = blinded_private_op(m); const BigInt c = m_powermod_e_n(x); BOTAN_ASSERT(m == c, "RSA sign consistency check"); - return BigInt::encode_1363(x, n.bytes()); + return BigInt::encode_1363(x, m_n.bytes()); } }; @@ -180,7 +180,7 @@ class RSA_KEM_Decryption_Operation : public PK_Ops::KEM_Decryption_with_KDF, const BigInt x = blinded_private_op(m); const BigInt c = m_powermod_e_n(x); BOTAN_ASSERT(m == c, "RSA KEM consistency check"); - return BigInt::encode_1363(x, n.bytes()); + return BigInt::encode_1363(x, m_n.bytes()); } }; |