aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/pubkey/mce/polyn_gf2m.cpp
diff options
context:
space:
mode:
authorfstrenzke <[email protected]>2014-11-26 18:19:47 +0000
committerlloyd <[email protected]>2014-11-26 18:19:47 +0000
commit0ef9ee80a015c7c88902cd435cff9e54c7db5dc1 (patch)
tree8a2461cd384fee3da5e9469721e013380b450443 /src/lib/pubkey/mce/polyn_gf2m.cpp
parent2561eaf5c4794a97d2a2091b894d69e2c9f70c24 (diff)
Add an implementation of McEliece encryption based on HyMES
(https://www.rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes). The original version is LGPL but cryptsource GmbH has secured permission to release it under a BSD license. Also includes the Overbeck CCA2 message encoding scheme.
Diffstat (limited to 'src/lib/pubkey/mce/polyn_gf2m.cpp')
-rw-r--r--src/lib/pubkey/mce/polyn_gf2m.cpp804
1 files changed, 804 insertions, 0 deletions
diff --git a/src/lib/pubkey/mce/polyn_gf2m.cpp b/src/lib/pubkey/mce/polyn_gf2m.cpp
new file mode 100644
index 000000000..a0da9b479
--- /dev/null
+++ b/src/lib/pubkey/mce/polyn_gf2m.cpp
@@ -0,0 +1,804 @@
+/**
+ * (C) Copyright Projet SECRET, INRIA, Rocquencourt
+ * (C) Bhaskar Biswas and Nicolas Sendrier
+ *
+ * (C) 2014 cryptosource GmbH
+ * (C) 2014 Falko Strenzke [email protected]
+ *
+ * Distributed under the terms of the Botan license
+ *
+ */
+
+#include <botan/polyn_gf2m.h>
+#include <cstring>
+#include <iostream>
+
+#include <botan/gf2m_rootfind_dcmp.h>
+#include <botan/code_based_util.h>
+#include <botan/gf2m_small_m.h>
+#include <botan/internal/bit_ops.h>
+
+namespace Botan {
+
+using namespace Botan::gf2m_small_m;
+
+namespace {
+
+gf2m generate_gf2m_mask(gf2m a)
+ {
+ gf2m result = (a != 0);
+ return ~(result - 1);
+ }
+
+unsigned nlz_16bit(u16bit x)
+ {
+ unsigned n;
+ if(x == 0) return 16;
+ n = 0;
+ if(x <= 0x00FF) {n = n + 8; x = x << 8;}
+ if(x <= 0x0FFF) {n = n + 4; x = x << 4;}
+ if(x <= 0x3FFF) {n = n + 2; x = x << 2;}
+ if(x <= 0x7FFF) {n = n + 1;}
+ return n;
+ }
+}
+
+using namespace Botan::gf2m_small_m;
+
+int polyn_gf2m::calc_degree_secure() const
+ {
+ int i = this->coeff.size() - 1;
+ int result = 0;
+ u32bit found_mask = 0;
+ u32bit tracker_mask = 0xffff;
+ for( ; i >= 0; i--)
+ {
+ found_mask = expand_mask_16bit(this->coeff[i]);
+ result |= i & found_mask & tracker_mask;
+ // tracker mask shall become zero once found mask is set
+ // it shall remain zero from then on
+ tracker_mask = tracker_mask & ~found_mask;
+ }
+ const_cast<polyn_gf2m*>(this)->m_deg = result;
+ return result;
+ }
+/**
+* number of leading zeros
+*/
+
+gf2m random_code_element(unsigned code_length, Botan::RandomNumberGenerator& rng)
+ {
+ if(code_length == 0)
+ {
+ throw Invalid_Argument("random_code_element() was supplied a code length of zero");
+ }
+ unsigned nlz = nlz_16bit(code_length-1);
+ gf2m mask = (1 << (16-nlz)) -1;
+ gf2m result;
+ do
+ {
+ rng.randomize((byte*)&result, sizeof(result));
+
+ result &= mask;
+ } while(result >= code_length); // rejection sampling
+ return result;
+ }
+
+polyn_gf2m::polyn_gf2m(polyn_gf2m const& other)
+ :m_deg(other.m_deg),
+ coeff(other.coeff),
+ msp_field(other.msp_field)
+ { }
+
+polyn_gf2m::polyn_gf2m( int d, std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field)
+ :m_deg(-1),
+ coeff(d+1),
+ msp_field(sp_field)
+ {
+ }
+
+std::string polyn_gf2m::to_string() const
+ {
+ int d = get_degree();
+ std::string result;
+ for(int i = 0; i < d + 1; i ++)
+ {
+ result += std::to_string(this->coeff[i]);
+ if(i != d)
+ {
+ result += ", ";
+ }
+ }
+ return result;
+ }
+/**
+* doesn't save coefficients:
+*/
+void polyn_gf2m::realloc(u32bit new_size)
+ {
+ this->coeff = secure_vector<gf2m>(new_size);
+ }
+
+polyn_gf2m::polyn_gf2m(const byte* mem, u32bit mem_len, std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field)
+ :msp_field(sp_field)
+ {
+ if(mem_len % sizeof(gf2m))
+ {
+ throw new Botan::Decoding_Error("illegal length of memory to decode ");
+ }
+
+ u32bit size = (mem_len / sizeof(this->coeff[0])) ;
+ this->coeff = secure_vector<gf2m>(size);
+ this->m_deg = -1;
+ for(u32bit i = 0; i < size; i++)
+ {
+ this->coeff[i] = gf2m_small_m::decode_gf2m(mem);
+ mem += sizeof(this->coeff[0]);
+ }
+ for(u32bit i = 0; i < size; i++)
+ {
+ if(this->coeff[i] >= (1 << sp_field->get_extension_degree()))
+ {
+ throw Botan::Decoding_Error("error decoding polynomial");
+ }
+ }
+ this->get_degree();
+ }
+
+
+polyn_gf2m::polyn_gf2m( std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field )
+ : m_deg(-1),
+ coeff(1),
+ msp_field(sp_field)
+ {};
+
+polyn_gf2m::polyn_gf2m(int degree, const unsigned char* mem, u32bit mem_byte_len, std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field)
+ :msp_field(sp_field)
+ {
+ u32bit j, k, l;
+ gf2m a;
+ u32bit polyn_size;
+ polyn_size = degree + 1;
+ if(polyn_size * sp_field->get_extension_degree() > 8 * mem_byte_len)
+ {
+ throw Botan::Decoding_Error("memory vector for polynomial has wrong size");
+ }
+ this->coeff = secure_vector<gf2m>(degree+1);
+ gf2m ext_deg = this->msp_field->get_extension_degree();
+ for (l = 0; l < polyn_size; l++)
+ {
+ k = (l * ext_deg) / 8;
+
+ j = (l * ext_deg) % 8;
+ a = mem[k] >> j;
+ if (j + ext_deg > 8)
+ {
+ a ^= mem[k + 1] << (8- j);
+ }
+ if(j + ext_deg > 16)
+ {
+ a ^= mem[k + 2] << (16- j);
+ }
+ a &= ((1 << ext_deg) - 1);
+ (*this).set_coef( l, a);
+ }
+
+ this->get_degree();
+ }
+
+#if 0
+void polyn_gf2m::encode(u32bit min_numo_coeffs, byte* mem, u32bit mem_len) const
+ {
+ u32bit i;
+ u32bit numo_coeffs, needed_size;
+ this->get_degree();
+ numo_coeffs = (min_numo_coeffs > static_cast<u32bit>(this->m_deg+1)) ? min_numo_coeffs : this->m_deg+1;
+ needed_size = sizeof(this->coeff[0]) * numo_coeffs;
+ if(mem_len < needed_size)
+ {
+ Invalid_Argument("provided memory too small to encode polynomial");
+ }
+
+ for(i = 0; i < numo_coeffs; i++)
+ {
+ gf2m to_enc;
+ if(i >= static_cast<u32bit>(this->m_deg+1))
+ {
+ /* encode a zero */
+ to_enc = 0;
+ }
+ else
+ {
+ to_enc = this->coeff[i];
+ }
+ mem += encode_gf2m(to_enc, mem);
+ }
+ }
+#endif
+
+
+void polyn_gf2m::set_to_zero()
+ {
+ memset(&this->coeff[0], 0, this->coeff.size() * sizeof (gf2m));
+ this->m_deg = -1;
+ }
+
+int polyn_gf2m::get_degree() const
+ {
+ int d = this->coeff.size() - 1;
+ while ((d >= 0) && (this->coeff[d] == 0))
+ --d;
+ const_cast<polyn_gf2m*>(this)->m_deg = d;
+ return d;
+ }
+
+
+static gf2m eval_aux(const gf2m * /*restrict*/ coeff, gf2m a, int d, std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field)
+ {
+ gf2m b;
+ b = coeff[d--];
+ for (; d >= 0; --d)
+ if (b != 0)
+ {
+ b = sp_field->gf_mul(b, a) ^ coeff[d];
+ }
+ else
+ {
+ b = coeff[d];
+ }
+ return b;
+ }
+
+gf2m polyn_gf2m::eval(gf2m a)
+ {
+ return eval_aux(&this->coeff[0], a, this->m_deg, this->msp_field);
+ }
+
+
+// p will contain it's remainder modulo g
+void polyn_gf2m::remainder(polyn_gf2m &p, const polyn_gf2m & g)
+ {
+ int i, j, d;
+ std::shared_ptr<gf2m_small_m::Gf2m_Field> msp_field = g.msp_field;
+ d = p.get_degree() - g.get_degree();
+ if (d >= 0) {
+ gf2m la = msp_field->gf_inv_rn(g.get_lead_coef());
+
+ for (i = p.get_degree(); d >= 0; --i, --d) {
+ if (p[i] != 0) {
+ gf2m lb = msp_field->gf_mul_rrn(la, p[i]);
+ for (j = 0; j < g.get_degree(); ++j)
+ {
+ p[j+d] ^= msp_field->gf_mul_zrz(lb, g[j]);
+ }
+ (*&p).set_coef( i, 0);
+ }
+ }
+ p.set_degree( g.get_degree() - 1);
+ while ((p.get_degree() >= 0) && (p[p.get_degree()] == 0))
+ p.set_degree( p.get_degree() - 1);
+ }
+ }
+
+std::vector<polyn_gf2m> polyn_gf2m::sqmod_init(const polyn_gf2m & g)
+ {
+ std::vector<polyn_gf2m> sq;
+ int signed_deg = g.get_degree();
+ if(signed_deg <= 0)
+ {
+ throw Invalid_Argument("cannot compute sqmod for such low degree");
+ }
+ u32bit d = (u32bit) signed_deg;
+ u32bit t = g.m_deg;
+ // create t zero polynomials
+ u32bit i;
+ for (i = 0; i < t; ++i)
+ {
+ sq.push_back(polyn_gf2m(t+1, g.get_sp_field()));
+ }
+ for (i = 0; i < d / 2; ++i)
+ {
+ sq[i].set_degree( 2 * i);
+ (*&sq[i]).set_coef( 2 * i, 1);
+ }
+
+ for (; i < d; ++i)
+ {
+ memset(&sq[i].coeff[0], 0, 2 * sizeof (gf2m));
+ memcpy(&sq[i].coeff[0] + 2, &sq[i - 1].coeff[0], d * sizeof (gf2m));
+ sq[i].set_degree( sq[i - 1].get_degree() + 2);
+ polyn_gf2m::remainder(sq[i], g);
+ }
+ return sq;
+ }
+
+/*Modulo p square of a certain polynomial g, sq[] contains the square
+Modulo g of the base canonical polynomials of degree < d, where d is
+the degree of G. The table sq[] will be calculated by polyn_gf2m__sqmod_init*/
+polyn_gf2m polyn_gf2m::sqmod( const std::vector<polyn_gf2m> & sq, int d)
+ {
+ int i, j;
+ gf2m la;
+ std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field = this->msp_field;
+
+ polyn_gf2m result(d - 1, sp_field);
+ // terms of low degree
+ for (i = 0; i < d / 2; ++i)
+ {
+ (*&result).set_coef( i * 2, sp_field->gf_square((*this)[i]));
+ }
+
+ // terms of high degree
+ for (; i < d; ++i)
+ {
+ gf2m lpi = (*this)[i];
+ if (lpi != 0)
+ {
+ lpi = sp_field->gf_log(lpi);
+ la = sp_field->gf_mul_rrr(lpi, lpi);
+ for (j = 0; j < d; ++j)
+ {
+ result[j] ^= sp_field->gf_mul_zrz(la, sq[i][j]);
+ }
+ }
+ }
+
+ // Update degre
+ result.set_degree( d - 1);
+ while ((result.get_degree() >= 0) && (result[result.get_degree()] == 0))
+ result.set_degree( result.get_degree() - 1);
+ return result;
+ }
+
+
+// destructive
+polyn_gf2m polyn_gf2m::gcd_aux(polyn_gf2m& p1, polyn_gf2m& p2)
+ {
+ if (p2.get_degree() == -1)
+ return p1;
+ else {
+ polyn_gf2m::remainder(p1, p2);
+ return polyn_gf2m::gcd_aux(p2, p1);
+ }
+ }
+
+
+polyn_gf2m polyn_gf2m::gcd(polyn_gf2m const& p1, polyn_gf2m const& p2)
+ {
+ polyn_gf2m a(p1);
+ polyn_gf2m b(p2);
+ if (a.get_degree() < b.get_degree())
+ {
+ return polyn_gf2m(polyn_gf2m::gcd_aux(b, a));
+ }
+ else
+ {
+ return polyn_gf2m(polyn_gf2m::gcd_aux(a, b));
+ }
+ }
+
+
+
+
+
+// Returns the degree of the smallest factor
+void polyn_gf2m::degppf(const polyn_gf2m & g, int* p_result)
+ {
+ int i, d;
+ polyn_gf2m s(g.get_sp_field());
+
+ d = g.get_degree();
+ std::vector<polyn_gf2m> u = polyn_gf2m::sqmod_init(g);
+
+ polyn_gf2m p( d - 1, g.msp_field);
+
+ p.set_degree( 1);
+ (*&p).set_coef( 1, 1);
+ (*p_result) = d;
+ for (i = 1; i <= (d / 2) * g.msp_field->get_extension_degree(); ++i)
+ {
+ polyn_gf2m r = p.sqmod(u, d);
+ if ((i % g.msp_field->get_extension_degree()) == 0)
+ {
+ r[1] ^= 1;
+ r.get_degree(); // The degree may change
+ s = polyn_gf2m::gcd( g, r);
+
+ if (s.get_degree() > 0)
+ {
+ (*p_result) = i / g.msp_field->get_extension_degree();
+ break;
+ }
+ r[1] ^= 1;
+ r.get_degree(); // The degree may change
+ }
+ // No need for the exchange s
+ s = p;
+ p = r;
+ r = s;
+ }
+
+
+ }
+
+void polyn_gf2m::patchup_deg_secure( u32bit trgt_deg, volatile gf2m patch_elem)
+ {
+ u32bit i;
+ if(this->coeff.size() < trgt_deg)
+ {
+ return;
+ }
+ for(i = 0; i < this->coeff.size(); i++)
+ {
+ u32bit equal, equal_mask;
+ this->coeff[i] |= patch_elem;
+ equal = (i == trgt_deg);
+ equal_mask = expand_mask_16bit(equal);
+ patch_elem &= ~equal_mask;
+ }
+ this->calc_degree_secure();
+ }
+// We suppose m_deg(g) >= m_deg(p)
+// v is the problem
+std::pair<polyn_gf2m, polyn_gf2m> polyn_gf2m::eea_with_coefficients( const polyn_gf2m & p, const polyn_gf2m & g, int break_deg)
+ {
+
+ std::shared_ptr<gf2m_small_m::Gf2m_Field> msp_field = g.msp_field;
+ int i, j, dr, du, delta;
+ gf2m a;
+ polyn_gf2m aux;
+
+ // initialisation of the local variables
+ // r0 <- g, r1 <- p, u0 <- 0, u1 <- 1
+ dr = g.get_degree();
+
+ polyn_gf2m r0(dr, g.msp_field);
+ polyn_gf2m r1(dr - 1, g.msp_field);
+ polyn_gf2m u0(dr - 1, g.msp_field);
+ polyn_gf2m u1(dr - 1, g.msp_field);
+
+ r0 = g;
+ r1 = p;
+ u0.set_to_zero();
+ u1.set_to_zero();
+ (*&u1).set_coef( 0, 1);
+ u1.set_degree( 0);
+
+
+ // invariants:
+ // r1 = u1 * p + v1 * g
+ // r0 = u0 * p + v0 * g
+ // and m_deg(u1) = m_deg(g) - m_deg(r0)
+ // It stops when m_deg (r1) <t (m_deg (r0)> = t)
+ // And therefore m_deg (u1) = m_deg (g) - m_deg (r0) <m_deg (g) - break_deg
+ du = 0;
+ dr = r1.get_degree();
+ delta = r0.get_degree() - dr;
+
+
+ while (dr >= break_deg)
+ {
+
+ for (j = delta; j >= 0; --j)
+ {
+ a = msp_field->gf_div(r0[dr + j], r1[dr]);
+ if (a != 0)
+ {
+ gf2m la = msp_field->gf_log(a);
+ // u0(z) <- u0(z) + a * u1(z) * z^j
+ for (i = 0; i <= du; ++i)
+ {
+ u0[i + j] ^= msp_field->gf_mul_zrz(la, u1[i]);
+ }
+ // r0(z) <- r0(z) + a * r1(z) * z^j
+ for (i = 0; i <= dr; ++i)
+ {
+ r0[i + j] ^= msp_field->gf_mul_zrz(la, r1[i]);
+ }
+ }
+ } // end loop over j
+
+ if(break_deg != 1) /* key eq. solving */
+ {
+ /* [ssms_icisc09] Countermeasure
+ * d_break from paper equals break_deg - 1
+ * */
+
+ volatile gf2m fake_elem = 0x01;
+ volatile gf2m cond1, cond2;
+ int trgt_deg = r1.get_degree() - 1;
+ r0.calc_degree_secure();
+ u0.calc_degree_secure();
+ if(!(g.get_degree() % 2))
+ {
+ /* t even */
+ cond1 = r0.get_degree() < break_deg - 1;
+ }
+ else
+ {
+ /* t odd */
+ cond1 = r0.get_degree() <= break_deg - 1;
+ cond2 = u0.get_degree() < break_deg - 1;
+ cond1 &= cond2;
+ }
+ /* expand cond1 to a full mask */
+ //CSEC_MASK__GEN_MASK_16B(cond1, mask);
+ gf2m mask = generate_gf2m_mask(cond1);
+ fake_elem &= mask;
+ r0.patchup_deg_secure(trgt_deg, fake_elem);
+ }
+ if(break_deg == 1) /* syndrome inversion */
+ {
+ volatile gf2m fake_elem = 0x00;
+ volatile u32bit trgt_deg = 0;
+ r0.calc_degree_secure();
+ u0.calc_degree_secure();
+ /**
+ * countermeasure against the low weight attacks for w=4, w=6 and w=8.
+ * Higher values are not covered since for w=8 we already have a
+ * probability for a positive of 1/n^3 from random ciphertexts with the
+ * given weight. For w = 10 it would be 1/n^4 and so on. Thus attacks
+ * based on such high values of w are considered impractical.
+ *
+ * The outer test for the degree of u ( Omega in the paper ) needs not to
+ * be disguised. Each of the three is performed at most once per EEA
+ * (syndrome inversion) execution, the attacker knows this already when
+ * preparing the ciphertext with the given weight. Inside these three
+ * cases however, we must use timing neutral (branch free) operations to
+ * implement the condition detection and the counteractions.
+ *
+ */
+ if(u0.get_degree() == 4)
+ {
+ u32bit mask = 0;
+ /**
+ * Condition that the EEA would break now
+ */
+ int cond_r = r0.get_degree() == 0;
+ /**
+ * Now come the conditions for all odd coefficients of this sigma
+ * candiate. If they are all fulfilled, then we know that we have a low
+ * weight error vector, since the key-equation solving EEA is skipped if
+ * the degree of tau^2 is low (=m_deg(u0)) and all its odd cofficients are
+ * zero (they would cause "full-lenght" contributions from the square
+ * root computation).
+ */
+ // Condition for the coefficient to Y to be cancelled out by the
+ // addition of Y before the square root computation:
+ int cond_u1 = msp_field->gf_mul(u0.coeff[1], msp_field->gf_inv(r0.coeff[0])) == 1;
+
+ // Condition sigma_3 = 0:
+ int cond_u3 = u0.coeff[3] == 0;
+ // combine the conditions:
+ cond_r &= (cond_u1 & cond_u3);
+ // mask generation:
+ mask = expand_mask_16bit(cond_r);
+ trgt_deg = 2 & mask;
+ fake_elem = 1 & mask;
+ }
+ else if(u0.get_degree() == 6)
+ {
+ u32bit mask = 0;
+ int cond_r= r0.get_degree() == 0;
+ int cond_u1 = msp_field->gf_mul(u0.coeff[1], msp_field->gf_inv(r0.coeff[0])) == 1;
+ int cond_u3 = u0.coeff[3] == 0;
+
+ int cond_u5 = u0.coeff[5] == 0;
+
+ cond_r &= (cond_u1 & cond_u3 & cond_u5);
+ mask = expand_mask_16bit(cond_r);
+ trgt_deg = 4 & mask;
+ fake_elem = 1 & mask;
+ }
+ else if(u0.get_degree() == 8)
+ {
+ u32bit mask = 0;
+ int cond_r= r0.get_degree() == 0;
+ int cond_u1 = msp_field->gf_mul(u0[1], msp_field->gf_inv(r0[0])) == 1;
+ int cond_u3 = u0.coeff[3] == 0;
+
+ int cond_u5 = u0.coeff[5] == 0;
+
+ int cond_u7 = u0.coeff[7] == 0;
+
+ cond_r &= (cond_u1 & cond_u3 & cond_u5 & cond_u7);
+ mask = expand_mask_16bit(cond_r);
+ trgt_deg = 6 & mask;
+ fake_elem = 1 & mask;
+ }
+ r0.patchup_deg_secure(trgt_deg, fake_elem);
+ }
+ // exchange
+ aux = r0; r0 = r1; r1 = aux;
+ aux = u0; u0 = u1; u1 = aux;
+
+ du = du + delta;
+ delta = 1;
+ while (r1[dr - delta] == 0)
+ {
+ delta++;
+ }
+
+
+ dr -= delta;
+ } /* end while loop (dr >= break_deg) */
+
+
+ u1.set_degree( du);
+ r1.set_degree( dr);
+ //return u1 and r1;
+ return std::make_pair(u1,r1); // coefficients u,v
+ }
+
+polyn_gf2m::polyn_gf2m(int t, Botan::RandomNumberGenerator& rng, std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field)
+ :m_deg(t),
+ coeff(t+1),
+ msp_field(sp_field)
+ {
+ int i;
+ (*this).set_coef( t, 1);
+ i = 0;
+ int m_deg;
+ do
+ {
+ for (i = 0; i < t; ++i)
+ {
+ (*this).set_coef( i, random_code_element(sp_field->get_cardinality(), rng));
+ }
+ polyn_gf2m::degppf(*this, &m_deg);
+ }
+ while (m_deg < t);
+ }
+
+
+void polyn_gf2m::poly_shiftmod( const polyn_gf2m & g)
+ {
+ int i, t;
+ gf2m a;
+
+ if(g.get_degree() <= 0)
+ {
+ throw Invalid_Argument("shiftmod cannot be called on polynomials of degree 0 or less");
+ }
+ std::shared_ptr<gf2m_small_m::Gf2m_Field> msp_field = g.msp_field;
+
+ t = g.get_degree();
+ a = msp_field->gf_div(this->coeff[t-1], g.coeff[t]);
+ for (i = t - 1; i > 0; --i)
+ {
+ this->coeff[i] = this->coeff[i - 1] ^ this->msp_field->gf_mul(a, g.coeff[i]);
+ }
+ this->coeff[0] = msp_field->gf_mul(a, g.coeff[0]);
+ }
+
+std::vector<polyn_gf2m> polyn_gf2m::sqrt_mod_init(const polyn_gf2m & g)
+ {
+ u32bit i, t;
+ u32bit nb_polyn_sqrt_mat;
+ std::shared_ptr<gf2m_small_m::Gf2m_Field> msp_field = g.msp_field;
+ std::vector<polyn_gf2m> result;
+ t = g.get_degree();
+ nb_polyn_sqrt_mat = t/2;
+
+ std::vector<polyn_gf2m> sq_aux = polyn_gf2m::sqmod_init(g);
+
+
+ polyn_gf2m p( t - 1, g.get_sp_field());
+ p.set_degree( 1);
+
+ (*&p).set_coef( 1, 1);
+ // q(z) = 0, p(z) = z
+ for (i = 0; i < t * msp_field->get_extension_degree() - 1; ++i)
+ {
+ // q(z) <- p(z)^2 mod g(z)
+ polyn_gf2m q = p.sqmod(sq_aux, t);
+ // q(z) <-> p(z)
+ polyn_gf2m aux = q;
+ q = p;
+ p = aux;
+ }
+ // p(z) = z^(2^(tm-1)) mod g(z) = sqrt(z) mod g(z)
+
+ for (i = 0; i < nb_polyn_sqrt_mat; ++i)
+ {
+ result.push_back(polyn_gf2m(t - 1, g.get_sp_field()));
+ }
+
+ result[0] = p;
+ result[0].get_degree();
+ for(i = 1; i < nb_polyn_sqrt_mat; i++)
+ {
+ result[i] = result[i - 1];
+ result[i].poly_shiftmod(g),
+ result[i].get_degree();
+ }
+
+ return result;
+ }
+
+std::vector<polyn_gf2m> syndrome_init(polyn_gf2m const& generator, std::vector<gf2m> const& support, int n)
+ {
+ int i,j,t;
+ gf2m a;
+
+
+ std::shared_ptr<gf2m_small_m::Gf2m_Field> msp_field = generator.msp_field;
+
+ std::vector<polyn_gf2m> result;
+ t = generator.get_degree();
+
+ //g(z)=g_t+g_(t-1).z^(t-1)+......+g_1.z+g_0
+ //f(z)=f_(t-1).z^(t-1)+......+f_1.z+f_0
+
+ for(j=0;j<n;j++)
+ {
+ result.push_back(polyn_gf2m( t-1, msp_field));
+
+ (*&result[j]).set_coef(t-1,1);
+ for(i=t-2;i>=0;i--)
+ {
+ (*&result[j]).set_coef(i, (generator)[i+1] ^
+ msp_field->gf_mul(lex_to_gray(support[j]),result[j][i+1]));
+ }
+ a = ((generator)[0] ^ msp_field->gf_mul(lex_to_gray(support[j]),result[j][0]));
+ for(i=0;i<t;i++)
+ {
+ (*&result[j]).set_coef(i, msp_field->gf_div(result[j][i],a));
+ }
+ }
+ return result;
+ }
+
+polyn_gf2m::polyn_gf2m(const secure_vector<byte>& encoded, std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field )
+ :msp_field(sp_field)
+ {
+ if(encoded.size() % 2)
+ {
+ throw Decoding_Error("encoded polynomial has odd length");
+ }
+ for(u32bit i = 0; i < encoded.size(); i += 2)
+ {
+ gf2m el = (encoded[i] << 8) | encoded[i + 1];
+ coeff.push_back(el);
+ }
+ get_degree();
+
+ }
+secure_vector<byte> polyn_gf2m::encode() const
+ {
+ secure_vector<byte> result;
+
+ if(m_deg < 1)
+ {
+ result.push_back(0);
+ result.push_back(0);
+ return result;
+ }
+
+ u32bit len = m_deg+1;
+ for(unsigned i = 0; i < len; i++)
+ {
+ // "big endian" encoding of the GF(2^m) elements
+ result.push_back(coeff[i] >> 8);
+ result.push_back(coeff[i]);
+ }
+ return result;
+ }
+
+void polyn_gf2m::swap(polyn_gf2m& other)
+ {
+ std::swap(this->m_deg, other.m_deg);
+ std::swap(this->msp_field, other.msp_field);
+ std::swap(this->coeff, other.coeff);
+ }
+
+bool polyn_gf2m::operator==(const polyn_gf2m & other) const
+ {
+ if(m_deg != other.m_deg || coeff != other.coeff)
+ {
+ return false;
+ }
+ return true;
+ }
+
+}