diff options
author | Jack Lloyd <[email protected]> | 2018-01-06 17:30:01 -0500 |
---|---|---|
committer | Jack Lloyd <[email protected]> | 2018-01-06 17:30:01 -0500 |
commit | d6dae3f5f48605f102e9482a44ede89bb77568d1 (patch) | |
tree | a617eddbe477da8cc478beb70ae8ddaa0c8bd457 /src/lib/pubkey/curve25519 | |
parent | 6af53b3f668bd82bbf454703c0e15590c447254c (diff) |
Reformat donna.cpp
Was originally kept in the same format as upstream, but upstream
is not maintained anymore so no reason to stick with it.
Diffstat (limited to 'src/lib/pubkey/curve25519')
-rw-r--r-- | src/lib/pubkey/curve25519/donna.cpp | 821 |
1 files changed, 412 insertions, 409 deletions
diff --git a/src/lib/pubkey/curve25519/donna.cpp b/src/lib/pubkey/curve25519/donna.cpp index 6807d56f6..4305ea143 100644 --- a/src/lib/pubkey/curve25519/donna.cpp +++ b/src/lib/pubkey/curve25519/donna.cpp @@ -1,462 +1,465 @@ /* -* curve25519-donna-c64.c from github.com/agl/curve25519-donna +* Based on curve25519-donna-c64.c from github.com/agl/curve25519-donna * revision 80ad9b9930c9baef5829dd2a235b6b7646d32a8e +* +* Further changes +* (C) 2014,2018 Jack Lloyd +* +* Botan is released under the Simplified BSD License (see license.txt) */ /* Copyright 2008, Google Inc. - * All rights reserved. - * - * Code released into the public domain. - * - * curve25519-donna: Curve25519 elliptic curve, public key function - * - * https://code.google.com/p/curve25519-donna/ - * - * Adam Langley <[email protected]> - * - * Derived from public domain C code by Daniel J. Bernstein <[email protected]> - * - * More information about curve25519 can be found here - * https://cr.yp.to/ecdh.html - * - * djb's sample implementation of curve25519 is written in a special assembly - * language called qhasm and uses the floating point registers. - * - * This is, almost, a clean room reimplementation from the curve25519 paper. It - * uses many of the tricks described therein. Only the crecip function is taken - * from the sample implementation. - */ +* All rights reserved. +* +* Code released into the public domain. +* +* curve25519-donna: Curve25519 elliptic curve, public key function +* +* https://code.google.com/p/curve25519-donna/ +* +* Adam Langley <[email protected]> +* +* Derived from public domain C code by Daniel J. Bernstein <[email protected]> +* +* More information about curve25519 can be found here +* https://cr.yp.to/ecdh.html +* +* djb's sample implementation of curve25519 is written in a special assembly +* language called qhasm and uses the floating point registers. +* +* This is, almost, a clean room reimplementation from the curve25519 paper. It +* uses many of the tricks described therein. Only the crecip function is taken +* from the sample implementation. +*/ #include <botan/curve25519.h> #include <botan/mul128.h> -#include <botan/internal/donna128.h> #include <botan/internal/ct_utils.h> +#include <botan/internal/donna128.h> #include <botan/loadstor.h> namespace Botan { -typedef uint8_t u8; -typedef uint64_t limb; -typedef limb felem[5]; - -typedef struct - { - limb* x; - limb* z; - } fmonty_pair_t; - -typedef struct - { - fmonty_pair_t q; - fmonty_pair_t q_dash; - const limb* q_minus_q_dash; - } fmonty_in_t; - -typedef struct - { - fmonty_pair_t two_q; - fmonty_pair_t q_plus_q_dash; - } fmonty_out_t; - +namespace { #if !defined(BOTAN_TARGET_HAS_NATIVE_UINT128) typedef donna128 uint128_t; #endif -/* Sum two numbers: output += in */ -static inline void -fsum(limb *output, const limb *in) { - output[0] += in[0]; - output[1] += in[1]; - output[2] += in[2]; - output[3] += in[3]; - output[4] += in[4]; -} - -/* Find the difference of two numbers: output = in - output - * (note the order of the arguments!) - * - * Assumes that out[i] < 2**52 - * On return, out[i] < 2**55 - */ -static inline void -fdifference_backwards(felem out, const felem in) { - /* 152 is 19 << 3 */ - static const limb two54m152 = (static_cast<limb>(1) << 54) - 152; - static const limb two54m8 = (static_cast<limb>(1) << 54) - 8; - - out[0] = in[0] + two54m152 - out[0]; - out[1] = in[1] + two54m8 - out[1]; - out[2] = in[2] + two54m8 - out[2]; - out[3] = in[3] + two54m8 - out[3]; - out[4] = in[4] + two54m8 - out[4]; -} - -/* Multiply a number by a scalar: output = in * scalar */ -static inline void -fscalar_product(felem output, const felem in, const limb scalar) { - uint128_t a = uint128_t(in[0]) * scalar; - output[0] = a & 0x7ffffffffffff; +struct fmonty_pair_t + { + uint64_t* x; + uint64_t* z; + }; - a = uint128_t(in[1]) * scalar + carry_shift(a, 51); - output[1] = a & 0x7ffffffffffff; +struct fmonty_in_t + { + fmonty_pair_t q; + fmonty_pair_t q_dash; + const uint64_t* q_minus_q_dash; + }; - a = uint128_t(in[2]) * scalar + carry_shift(a, 51); - output[2] = a & 0x7ffffffffffff; +struct fmonty_out_t + { + fmonty_pair_t two_q; + fmonty_pair_t q_plus_q_dash; + }; - a = uint128_t(in[3]) * scalar + carry_shift(a, 51); - output[3] = a & 0x7ffffffffffff; +/* Sum two numbers: output += in */ +inline void fsum(uint64_t out[5], const uint64_t in[5]) + { + out[0] += in[0]; + out[1] += in[1]; + out[2] += in[2]; + out[3] += in[3]; + out[4] += in[4]; + } + +/* Find the difference of two numbers: out = in - out +* (note the order of the arguments!) +* +* Assumes that out[i] < 2**52 +* On return, out[i] < 2**55 +*/ +inline void fdifference_backwards(uint64_t out[5], const uint64_t in[5]) + { + /* 152 is 19 << 3 */ + const uint64_t two54m152 = (static_cast<uint64_t>(1) << 54) - 152; + const uint64_t two54m8 = (static_cast<uint64_t>(1) << 54) - 8; + + out[0] = in[0] + two54m152 - out[0]; + out[1] = in[1] + two54m8 - out[1]; + out[2] = in[2] + two54m8 - out[2]; + out[3] = in[3] + two54m8 - out[3]; + out[4] = in[4] + two54m8 - out[4]; + } + +/* Multiply a number by a scalar: out = in * scalar */ +inline void fscalar_product(uint64_t out[5], const uint64_t in[5], const uint64_t scalar) + { + uint128_t a = uint128_t(in[0]) * scalar; + out[0] = a & 0x7ffffffffffff; - a = uint128_t(in[4]) * scalar + carry_shift(a, 51); - output[4] = a & 0x7ffffffffffff; + a = uint128_t(in[1]) * scalar + carry_shift(a, 51); + out[1] = a & 0x7ffffffffffff; - output[0] += carry_shift(a, 51) * 19; -} + a = uint128_t(in[2]) * scalar + carry_shift(a, 51); + out[2] = a & 0x7ffffffffffff; -/* Multiply two numbers: output = in2 * in - * - * output must be distinct to both inputs. The inputs are reduced coefficient - * form, the output is not. - * - * Assumes that in[i] < 2**55 and likewise for in2. - * On return, output[i] < 2**52 - */ -static inline void -fmul(felem output, const felem in2, const felem in) { - uint128_t t[5]; - limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c; - - r0 = in[0]; - r1 = in[1]; - r2 = in[2]; - r3 = in[3]; - r4 = in[4]; - - s0 = in2[0]; - s1 = in2[1]; - s2 = in2[2]; - s3 = in2[3]; - s4 = in2[4]; - - t[0] = uint128_t(r0) * s0; - t[1] = uint128_t(r0) * s1 + uint128_t(r1) * s0; - t[2] = uint128_t(r0) * s2 + uint128_t(r2) * s0 + uint128_t(r1) * s1; - t[3] = uint128_t(r0) * s3 + uint128_t(r3) * s0 + uint128_t(r1) * s2 + uint128_t(r2) * s1; - t[4] = uint128_t(r0) * s4 + uint128_t(r4) * s0 + uint128_t(r3) * s1 + uint128_t(r1) * s3 + uint128_t(r2) * s2; - - r4 *= 19; - r1 *= 19; - r2 *= 19; - r3 *= 19; - - t[0] += uint128_t(r4) * s1 + uint128_t(r1) * s4 + uint128_t(r2) * s3 + uint128_t(r3) * s2; - t[1] += uint128_t(r4) * s2 + uint128_t(r2) * s4 + uint128_t(r3) * s3; - t[2] += uint128_t(r4) * s3 + uint128_t(r3) * s4; - t[3] += uint128_t(r4) * s4; - - r0 = t[0] & 0x7ffffffffffff; c = carry_shift(t[0], 51); - t[1] += c; r1 = t[1] & 0x7ffffffffffff; c = carry_shift(t[1], 51); - t[2] += c; r2 = t[2] & 0x7ffffffffffff; c = carry_shift(t[2], 51); - t[3] += c; r3 = t[3] & 0x7ffffffffffff; c = carry_shift(t[3], 51); - t[4] += c; r4 = t[4] & 0x7ffffffffffff; c = carry_shift(t[4], 51); - r0 += c * 19; c = carry_shift(r0, 51); r0 = r0 & 0x7ffffffffffff; - r1 += c; c = carry_shift(r1, 51); r1 = r1 & 0x7ffffffffffff; - r2 += c; - - output[0] = r0; - output[1] = r1; - output[2] = r2; - output[3] = r3; - output[4] = r4; -} + a = uint128_t(in[3]) * scalar + carry_shift(a, 51); + out[3] = a & 0x7ffffffffffff; -static inline void fsquare_times(felem output, const felem in, limb count) { - uint128_t t[5]; - limb r0,r1,r2,r3,r4,c; - limb d0,d1,d2,d4,d419; - - r0 = in[0]; - r1 = in[1]; - r2 = in[2]; - r3 = in[3]; - r4 = in[4]; - - do { - d0 = r0 * 2; - d1 = r1 * 2; - d2 = r2 * 2 * 19; - d419 = r4 * 19; - d4 = d419 * 2; - - t[0] = uint128_t(r0) * r0 + uint128_t(d4) * r1 + uint128_t(d2) * (r3 ); - t[1] = uint128_t(d0) * r1 + uint128_t(d4) * r2 + uint128_t(r3) * (r3 * 19); - t[2] = uint128_t(d0) * r2 + uint128_t(r1) * r1 + uint128_t(d4) * (r3 ); - t[3] = uint128_t(d0) * r3 + uint128_t(d1) * r2 + uint128_t(r4) * (d419 ); - t[4] = uint128_t(d0) * r4 + uint128_t(d1) * r3 + uint128_t(r2) * (r2 ); - - r0 = t[0] & 0x7ffffffffffff; c = carry_shift(t[0], 51); - t[1] += c; r1 = t[1] & 0x7ffffffffffff; c = carry_shift(t[1], 51); - t[2] += c; r2 = t[2] & 0x7ffffffffffff; c = carry_shift(t[2], 51); - t[3] += c; r3 = t[3] & 0x7ffffffffffff; c = carry_shift(t[3], 51); - t[4] += c; r4 = t[4] & 0x7ffffffffffff; c = carry_shift(t[4], 51); - r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff; - r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff; - r2 += c; - } while(--count); - - output[0] = r0; - output[1] = r1; - output[2] = r2; - output[3] = r3; - output[4] = r4; -} + a = uint128_t(in[4]) * scalar + carry_shift(a, 51); + out[4] = a & 0x7ffffffffffff; -/* Load a little-endian 64-bit number */ -static limb -load_limb(const u8 *in) { - return load_le<uint64_t>(in, 0); -} + out[0] += carry_shift(a, 51) * 19; + } -static void -store_limb(u8 *out, limb in) { - store_le(in, out); -} +/* Multiply two numbers: out = in2 * in +* +* out must be distinct to both inputs. The inputs are reduced coefficient +* form, the out is not. +* +* Assumes that in[i] < 2**55 and likewise for in2. +* On return, out[i] < 2**52 +*/ +inline void fmul(uint64_t out[5], const uint64_t in2[5], const uint64_t in[5]) + { + uint128_t t[5]; + uint64_t r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c; + + r0 = in[0]; + r1 = in[1]; + r2 = in[2]; + r3 = in[3]; + r4 = in[4]; + + s0 = in2[0]; + s1 = in2[1]; + s2 = in2[2]; + s3 = in2[3]; + s4 = in2[4]; + + t[0] = uint128_t(r0) * s0; + t[1] = uint128_t(r0) * s1 + uint128_t(r1) * s0; + t[2] = uint128_t(r0) * s2 + uint128_t(r2) * s0 + uint128_t(r1) * s1; + t[3] = uint128_t(r0) * s3 + uint128_t(r3) * s0 + uint128_t(r1) * s2 + uint128_t(r2) * s1; + t[4] = uint128_t(r0) * s4 + uint128_t(r4) * s0 + uint128_t(r3) * s1 + uint128_t(r1) * s3 + uint128_t(r2) * s2; + + r4 *= 19; + r1 *= 19; + r2 *= 19; + r3 *= 19; + + t[0] += uint128_t(r4) * s1 + uint128_t(r1) * s4 + uint128_t(r2) * s3 + uint128_t(r3) * s2; + t[1] += uint128_t(r4) * s2 + uint128_t(r2) * s4 + uint128_t(r3) * s3; + t[2] += uint128_t(r4) * s3 + uint128_t(r3) * s4; + t[3] += uint128_t(r4) * s4; + + r0 = t[0] & 0x7ffffffffffff; c = carry_shift(t[0], 51); + t[1] += c; r1 = t[1] & 0x7ffffffffffff; c = carry_shift(t[1], 51); + t[2] += c; r2 = t[2] & 0x7ffffffffffff; c = carry_shift(t[2], 51); + t[3] += c; r3 = t[3] & 0x7ffffffffffff; c = carry_shift(t[3], 51); + t[4] += c; r4 = t[4] & 0x7ffffffffffff; c = carry_shift(t[4], 51); + r0 += c * 19; c = carry_shift(r0, 51); r0 = r0 & 0x7ffffffffffff; + r1 += c; c = carry_shift(r1, 51); r1 = r1 & 0x7ffffffffffff; + r2 += c; + + out[0] = r0; + out[1] = r1; + out[2] = r2; + out[3] = r3; + out[4] = r4; + } + +inline void fsquare_times(uint64_t out[5], const uint64_t in[5], size_t count) + { + uint64_t r0 = in[0]; + uint64_t r1 = in[1]; + uint64_t r2 = in[2]; + uint64_t r3 = in[3]; + uint64_t r4 = in[4]; + + for(size_t i = 0; i != count; ++i) + { + const uint64_t d0 = r0 * 2; + const uint64_t d1 = r1 * 2; + const uint64_t d2 = r2 * 2 * 19; + const uint64_t d419 = r4 * 19; + const uint64_t d4 = d419 * 2; + + uint128_t t0 = uint128_t(r0) * r0 + uint128_t(d4) * r1 + uint128_t(d2) * (r3 ); + uint128_t t1 = uint128_t(d0) * r1 + uint128_t(d4) * r2 + uint128_t(r3) * (r3 * 19); + uint128_t t2 = uint128_t(d0) * r2 + uint128_t(r1) * r1 + uint128_t(d4) * (r3 ); + uint128_t t3 = uint128_t(d0) * r3 + uint128_t(d1) * r2 + uint128_t(r4) * (d419 ); + uint128_t t4 = uint128_t(d0) * r4 + uint128_t(d1) * r3 + uint128_t(r2) * (r2 ); + + r0 = t0 & 0x7ffffffffffff; t1 += carry_shift(t0, 51); + r1 = t1 & 0x7ffffffffffff; t2 += carry_shift(t1, 51); + r2 = t2 & 0x7ffffffffffff; t3 += carry_shift(t2, 51); + r3 = t3 & 0x7ffffffffffff; t4 += carry_shift(t3, 51); + r4 = t4 & 0x7ffffffffffff; + + uint64_t c = carry_shift(t4, 51); + + r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff; + r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff; + r2 += c; + } + + out[0] = r0; + out[1] = r1; + out[2] = r2; + out[3] = r3; + out[4] = r4; + } /* Take a little-endian, 32-byte number and expand it into polynomial form */ -static void -fexpand(limb *output, const u8 *in) { - output[0] = load_limb(in) & 0x7ffffffffffff; - output[1] = (load_limb(in+6) >> 3) & 0x7ffffffffffff; - output[2] = (load_limb(in+12) >> 6) & 0x7ffffffffffff; - output[3] = (load_limb(in+19) >> 1) & 0x7ffffffffffff; - output[4] = (load_limb(in+24) >> 12) & 0x7ffffffffffff; -} +inline void fexpand(uint64_t *out, const uint8_t *in) + { + out[0] = load_le<uint64_t>(in, 0) & 0x7ffffffffffff; + out[1] = (load_le<uint64_t>(in+6, 0) >> 3) & 0x7ffffffffffff; + out[2] = (load_le<uint64_t>(in+12, 0) >> 6) & 0x7ffffffffffff; + out[3] = (load_le<uint64_t>(in+19, 0) >> 1) & 0x7ffffffffffff; + out[4] = (load_le<uint64_t>(in+24, 0) >> 12) & 0x7ffffffffffff; + } /* Take a fully reduced polynomial form number and contract it into a - * little-endian, 32-byte array - */ -static void -fcontract(u8 *output, const felem input) { - uint128_t t[5]; - - t[0] = input[0]; - t[1] = input[1]; - t[2] = input[2]; - t[3] = input[3]; - t[4] = input[4]; - - t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff; - t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff; - t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff; - t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff; - t[0] += (t[4] >> 51) * 19; t[4] &= 0x7ffffffffffff; - - t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff; - t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff; - t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff; - t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff; - t[0] += (t[4] >> 51) * 19; t[4] &= 0x7ffffffffffff; - - /* now t is between 0 and 2^255-1, properly carried. */ - /* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */ - - t[0] += 19; - - t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff; - t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff; - t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff; - t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff; - t[0] += (t[4] >> 51) * 19; t[4] &= 0x7ffffffffffff; - - /* now between 19 and 2^255-1 in both cases, and offset by 19. */ - - t[0] += 0x8000000000000 - 19; - t[1] += 0x8000000000000 - 1; - t[2] += 0x8000000000000 - 1; - t[3] += 0x8000000000000 - 1; - t[4] += 0x8000000000000 - 1; - - /* now between 2^255 and 2^256-20, and offset by 2^255. */ - - t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff; - t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff; - t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff; - t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff; - t[4] &= 0x7ffffffffffff; - - store_limb(output, combine_lower(t[0], 0, t[1], 51)); - store_limb(output+8, combine_lower(t[1], 13, t[2], 38)); - store_limb(output+16, combine_lower(t[2], 26, t[3], 25)); - store_limb(output+24, combine_lower(t[3], 39, t[4], 12)); -} +* little-endian, 32-byte array +*/ +inline void fcontract(uint8_t *out, const uint64_t input[5]) + { + uint128_t t0 = input[0]; + uint128_t t1 = input[1]; + uint128_t t2 = input[2]; + uint128_t t3 = input[3]; + uint128_t t4 = input[4]; + + t1 += t0 >> 51; t0 &= 0x7ffffffffffff; + t2 += t1 >> 51; t1 &= 0x7ffffffffffff; + t3 += t2 >> 51; t2 &= 0x7ffffffffffff; + t4 += t3 >> 51; t3 &= 0x7ffffffffffff; + t0 += (t4 >> 51) * 19; t4 &= 0x7ffffffffffff; + + t1 += t0 >> 51; t0 &= 0x7ffffffffffff; + t2 += t1 >> 51; t1 &= 0x7ffffffffffff; + t3 += t2 >> 51; t2 &= 0x7ffffffffffff; + t4 += t3 >> 51; t3 &= 0x7ffffffffffff; + t0 += (t4 >> 51) * 19; t4 &= 0x7ffffffffffff; + + /* now t is between 0 and 2^255-1, properly carried. */ + /* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */ + + t0 += 19; + + t1 += t0 >> 51; t0 &= 0x7ffffffffffff; + t2 += t1 >> 51; t1 &= 0x7ffffffffffff; + t3 += t2 >> 51; t2 &= 0x7ffffffffffff; + t4 += t3 >> 51; t3 &= 0x7ffffffffffff; + t0 += (t4 >> 51) * 19; t4 &= 0x7ffffffffffff; + + /* now between 19 and 2^255-1 in both cases, and offset by 19. */ + + t0 += 0x8000000000000 - 19; + t1 += 0x8000000000000 - 1; + t2 += 0x8000000000000 - 1; + t3 += 0x8000000000000 - 1; + t4 += 0x8000000000000 - 1; + + /* now between 2^255 and 2^256-20, and offset by 2^255. */ + + t1 += t0 >> 51; t0 &= 0x7ffffffffffff; + t2 += t1 >> 51; t1 &= 0x7ffffffffffff; + t3 += t2 >> 51; t2 &= 0x7ffffffffffff; + t4 += t3 >> 51; t3 &= 0x7ffffffffffff; + t4 &= 0x7ffffffffffff; + + store_le(out, + combine_lower(t0, 0, t1, 51), + combine_lower(t1, 13, t2, 38), + combine_lower(t2, 26, t3, 25), + combine_lower(t3, 39, t4, 12)); + } /* Input: Q, Q', Q-Q' - * Output: 2Q, Q+Q' - * - * result.two_q (2*Q): long form - * result.q_plus_q_dash (Q + Q): long form - * in.q: short form, destroyed - * in.q_dash: short form, destroyed - * in.q_minus_q_dash: short form, preserved - */ -static void +* Out: 2Q, Q+Q' +* +* result.two_q (2*Q): long form +* result.q_plus_q_dash (Q + Q): long form +* in.q: short form, destroyed +* in.q_dash: short form, destroyed +* in.q_minus_q_dash: short form, preserved +*/ +void fmonty(fmonty_out_t& result, fmonty_in_t& in) -{ - limb origx[5], origxprime[5], zzz[5], xx[5], zz[5], xxprime[5], - zzprime[5], zzzprime[5]; - - copy_mem(origx, in.q.x, 5); - fsum(in.q.x, in.q.z); - fdifference_backwards(in.q.z, origx); // does x - z - - copy_mem(origxprime, in.q_dash.x, 5); - fsum(in.q_dash.x, in.q_dash.z); - fdifference_backwards(in.q_dash.z, origxprime); - fmul(xxprime, in.q_dash.x, in.q.z); - fmul(zzprime, in.q.x, in.q_dash.z); - copy_mem(origxprime, xxprime, 5); - fsum(xxprime, zzprime); - fdifference_backwards(zzprime, origxprime); - fsquare_times(result.q_plus_q_dash.x, xxprime, 1); - fsquare_times(zzzprime, zzprime, 1); - fmul(result.q_plus_q_dash.z, zzzprime, in.q_minus_q_dash); - - fsquare_times(xx, in.q.x, 1); - fsquare_times(zz, in.q.z, 1); - fmul(result.two_q.x, xx, zz); - fdifference_backwards(zz, xx); // does zz = xx - zz - fscalar_product(zzz, zz, 121665); - fsum(zzz, xx); - fmul(result.two_q.z, zz, zzz); -} + { + uint64_t origx[5]; + uint64_t origxprime[5]; + uint64_t zzz[5]; + uint64_t xx[5]; + uint64_t zz[5]; + uint64_t xxprime[5]; + uint64_t zzprime[5]; + uint64_t zzzprime[5]; + + copy_mem(origx, in.q.x, 5); + fsum(in.q.x, in.q.z); + fdifference_backwards(in.q.z, origx); // does x - z + + copy_mem(origxprime, in.q_dash.x, 5); + fsum(in.q_dash.x, in.q_dash.z); + fdifference_backwards(in.q_dash.z, origxprime); + fmul(xxprime, in.q_dash.x, in.q.z); + fmul(zzprime, in.q.x, in.q_dash.z); + copy_mem(origxprime, xxprime, 5); + fsum(xxprime, zzprime); + fdifference_backwards(zzprime, origxprime); + fsquare_times(result.q_plus_q_dash.x, xxprime, 1); + fsquare_times(zzzprime, zzprime, 1); + fmul(result.q_plus_q_dash.z, zzzprime, in.q_minus_q_dash); + + fsquare_times(xx, in.q.x, 1); + fsquare_times(zz, in.q.z, 1); + fmul(result.two_q.x, xx, zz); + fdifference_backwards(zz, xx); // does zz = xx - zz + fscalar_product(zzz, zz, 121665); + fsum(zzz, xx); + fmul(result.two_q.z, zz, zzz); + } // ----------------------------------------------------------------------------- -// Maybe swap the contents of two limb arrays (@a and @b), each @len elements +// Maybe swap the contents of two uint64_t arrays (@a and @b), each @len elements // long. Perform the swap iff @swap is non-zero. // // This function performs the swap without leaking any side-channel // information. // ----------------------------------------------------------------------------- -static void -swap_conditional(limb a[5], limb b[5], limb iswap) { - unsigned i; - const limb swap = static_cast<limb>(-iswap); - - for (i = 0; i < 5; ++i) { - const limb x = swap & (a[i] ^ b[i]); - a[i] ^= x; - b[i] ^= x; - } -} +void swap_conditional(uint64_t a[5], uint64_t b[5], uint64_t iswap) + { + const uint64_t swap = static_cast<uint64_t>(-iswap); + + for(size_t i = 0; i < 5; ++i) + { + const uint64_t x = swap & (a[i] ^ b[i]); + a[i] ^= x; + b[i] ^= x; + } + } /* Calculates nQ where Q is the x-coordinate of a point on the curve - * - * resultx/resultz: the x coordinate of the resulting curve point (short form) - * n: a little endian, 32-byte number - * q: a point of the curve (short form) - */ -static void -cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) { - limb a[5] = {0}, b[5] = {1}, c[5] = {1}, d[5] = {0}; - limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t; - limb e[5] = {0}, f[5] = {1}, g[5] = {0}, h[5] = {1}; - limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h; - - unsigned i, j; - - copy_mem(nqpqx, q, 5); - - for (i = 0; i < 32; ++i) { - u8 byteval = n[31 - i]; - for (j = 0; j < 8; ++j) { - const limb bit = byteval >> 7; - - swap_conditional(nqx, nqpqx, bit); - swap_conditional(nqz, nqpqz, bit); - - fmonty_out_t result { {nqx2, nqz2}, {nqpqx2, nqpqz2} }; - fmonty_in_t in { { nqx, nqz }, { nqpqx, nqpqz }, q }; - fmonty(result, in); - swap_conditional(nqx2, nqpqx2, bit); - swap_conditional(nqz2, nqpqz2, bit); - - t = nqx; - nqx = nqx2; - nqx2 = t; - t = nqz; - nqz = nqz2; - nqz2 = t; - t = nqpqx; - nqpqx = nqpqx2; - nqpqx2 = t; - t = nqpqz; - nqpqz = nqpqz2; - nqpqz2 = t; - - byteval <<= 1; - } - } - - copy_mem(resultx, nqx, 5); - copy_mem(resultz, nqz, 5); -} +* +* resultx/resultz: the x coordinate of the resulting curve point (short form) +* n: a little endian, 32-byte number +* q: a point of the curve (short form) +*/ +void cmult(uint64_t *resultx, uint64_t *resultz, const uint8_t *n, const uint64_t *q) + { + uint64_t a[5] = {0}; + uint64_t b[5] = {1}; + uint64_t c[5] = {1}; + uint64_t d[5] = {0}; + uint64_t e[5] = {0}; + uint64_t f[5] = {1}; + uint64_t g[5] = {0}; + uint64_t h[5] = {1}; + + uint64_t *nqpqx = a; + uint64_t *nqpqz = b; + uint64_t *nqx = c; + uint64_t *nqz = d; + uint64_t *nqpqx2 = e; + uint64_t *nqpqz2 = f; + uint64_t *nqx2 = g; + uint64_t *nqz2 = h; + + copy_mem(nqpqx, q, 5); + + for(size_t i = 0; i < 32; ++i) + { + for(size_t j = 0; j < 8; ++j) + { + const uint64_t bit = (n[31 - i] >> (7-j)) & 1; + + swap_conditional(nqx, nqpqx, bit); + swap_conditional(nqz, nqpqz, bit); + + fmonty_out_t result { {nqx2, nqz2}, {nqpqx2, nqpqz2} }; + fmonty_in_t in { { nqx, nqz }, { nqpqx, nqpqz }, q }; + fmonty(result, in); + swap_conditional(nqx2, nqpqx2, bit); + swap_conditional(nqz2, nqpqz2, bit); + + std::swap(nqx, nqx2); + std::swap(nqz, nqz2); + std::swap(nqpqx, nqpqx2); + std::swap(nqpqz, nqpqz2); + } + } + + copy_mem(resultx, nqx, 5); + copy_mem(resultz, nqz, 5); + } // ----------------------------------------------------------------------------- // Shamelessly copied from djb's code, tightened a little // ----------------------------------------------------------------------------- -static void -crecip(felem out, const felem z) { - felem a,t0,b,c; - - /* 2 */ fsquare_times(a, z, 1); // a = 2 - /* 8 */ fsquare_times(t0, a, 2); - /* 9 */ fmul(b, t0, z); // b = 9 - /* 11 */ fmul(a, b, a); // a = 11 - /* 22 */ fsquare_times(t0, a, 1); - /* 2^5 - 2^0 = 31 */ fmul(b, t0, b); - /* 2^10 - 2^5 */ fsquare_times(t0, b, 5); - /* 2^10 - 2^0 */ fmul(b, t0, b); - /* 2^20 - 2^10 */ fsquare_times(t0, b, 10); - /* 2^20 - 2^0 */ fmul(c, t0, b); - /* 2^40 - 2^20 */ fsquare_times(t0, c, 20); - /* 2^40 - 2^0 */ fmul(t0, t0, c); - /* 2^50 - 2^10 */ fsquare_times(t0, t0, 10); - /* 2^50 - 2^0 */ fmul(b, t0, b); - /* 2^100 - 2^50 */ fsquare_times(t0, b, 50); - /* 2^100 - 2^0 */ fmul(c, t0, b); - /* 2^200 - 2^100 */ fsquare_times(t0, c, 100); - /* 2^200 - 2^0 */ fmul(t0, t0, c); - /* 2^250 - 2^50 */ fsquare_times(t0, t0, 50); - /* 2^250 - 2^0 */ fmul(t0, t0, b); - /* 2^255 - 2^5 */ fsquare_times(t0, t0, 5); - /* 2^255 - 21 */ fmul(out, t0, a); +void crecip(uint64_t out[5], const uint64_t z[5]) + { + uint64_t a[5]; + uint64_t b[5]; + uint64_t c[5]; + uint64_t t0[5]; + + /* 2 */ fsquare_times(a, z, 1); // a = 2 + /* 8 */ fsquare_times(t0, a, 2); + /* 9 */ fmul(b, t0, z); // b = 9 + /* 11 */ fmul(a, b, a); // a = 11 + /* 22 */ fsquare_times(t0, a, 1); + /* 2^5 - 2^0 = 31 */ fmul(b, t0, b); + /* 2^10 - 2^5 */ fsquare_times(t0, b, 5); + /* 2^10 - 2^0 */ fmul(b, t0, b); + /* 2^20 - 2^10 */ fsquare_times(t0, b, 10); + /* 2^20 - 2^0 */ fmul(c, t0, b); + /* 2^40 - 2^20 */ fsquare_times(t0, c, 20); + /* 2^40 - 2^0 */ fmul(t0, t0, c); + /* 2^50 - 2^10 */ fsquare_times(t0, t0, 10); + /* 2^50 - 2^0 */ fmul(b, t0, b); + /* 2^100 - 2^50 */ fsquare_times(t0, b, 50); + /* 2^100 - 2^0 */ fmul(c, t0, b); + /* 2^200 - 2^100 */ fsquare_times(t0, c, 100); + /* 2^200 - 2^0 */ fmul(t0, t0, c); + /* 2^250 - 2^50 */ fsquare_times(t0, t0, 50); + /* 2^250 - 2^0 */ fmul(t0, t0, b); + /* 2^255 - 2^5 */ fsquare_times(t0, t0, 5); + /* 2^255 - 21 */ fmul(out, t0, a); + } + } void -curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) { - - CT::poison(secret, 32); - CT::poison(basepoint, 32); - - limb bp[5], x[5], z[5], zmone[5]; - uint8_t e[32]; - int i; - - for (i = 0;i < 32;++i) e[i] = secret[i]; - e[0] &= 248; - e[31] &= 127; - e[31] |= 64; - - fexpand(bp, basepoint); - cmult(x, z, e, bp); - crecip(zmone, z); - fmul(z, x, zmone); - fcontract(mypublic, z); - - CT::unpoison(secret, 32); - CT::unpoison(basepoint, 32); - CT::unpoison(mypublic, 32); -} +curve25519_donna(uint8_t *mypublic, const uint8_t *secret, const uint8_t *basepoint) + { + CT::poison(secret, 32); + CT::poison(basepoint, 32); + + uint64_t bp[5], x[5], z[5], zmone[5]; + uint8_t e[32]; + + copy_mem(e, secret, 32); + e[ 0] &= 248; + e[31] &= 127; + e[31] |= 64; + + fexpand(bp, basepoint); + cmult(x, z, e, bp); + crecip(zmone, z); + fmul(z, x, zmone); + fcontract(mypublic, z); + + CT::unpoison(secret, 32); + CT::unpoison(basepoint, 32); + CT::unpoison(mypublic, 32); + } } |