aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/math/numbertheory/numthry.cpp
diff options
context:
space:
mode:
authorlloyd <[email protected]>2014-01-10 03:41:59 +0000
committerlloyd <[email protected]>2014-01-10 03:41:59 +0000
commit6894dca64c04936d07048c0e8cbf7e25858548c3 (patch)
tree5d572bfde9fe667dab14e3f04b5285a85d8acd95 /src/lib/math/numbertheory/numthry.cpp
parent9efa3be92442afb3d0b69890a36c7f122df18eda (diff)
Move lib into src
Diffstat (limited to 'src/lib/math/numbertheory/numthry.cpp')
-rw-r--r--src/lib/math/numbertheory/numthry.cpp409
1 files changed, 409 insertions, 0 deletions
diff --git a/src/lib/math/numbertheory/numthry.cpp b/src/lib/math/numbertheory/numthry.cpp
new file mode 100644
index 000000000..e3c673ea5
--- /dev/null
+++ b/src/lib/math/numbertheory/numthry.cpp
@@ -0,0 +1,409 @@
+/*
+* Number Theory Functions
+* (C) 1999-2011 Jack Lloyd
+*
+* Distributed under the terms of the Botan license
+*/
+
+#include <botan/numthry.h>
+#include <botan/reducer.h>
+#include <botan/internal/bit_ops.h>
+#include <botan/internal/mp_core.h>
+#include <algorithm>
+
+namespace Botan {
+
+namespace {
+
+/*
+* Miller-Rabin Primality Tester
+*/
+class MillerRabin_Test
+ {
+ public:
+ bool is_witness(const BigInt& nonce);
+ MillerRabin_Test(const BigInt& num);
+ private:
+ BigInt n, r, n_minus_1;
+ size_t s;
+ Fixed_Exponent_Power_Mod pow_mod;
+ Modular_Reducer reducer;
+ };
+
+/*
+* Miller-Rabin Test, as described in Handbook of Applied Cryptography
+* section 4.24
+*/
+bool MillerRabin_Test::is_witness(const BigInt& a)
+ {
+ if(a < 2 || a >= n_minus_1)
+ throw Invalid_Argument("Bad size for nonce in Miller-Rabin test");
+
+ BigInt y = pow_mod(a);
+ if(y == 1 || y == n_minus_1)
+ return false;
+
+ for(size_t i = 1; i != s; ++i)
+ {
+ y = reducer.square(y);
+
+ if(y == 1) // found a non-trivial square root
+ return true;
+
+ if(y == n_minus_1) // -1, trivial square root, so give up
+ return false;
+ }
+
+ if(y != n_minus_1) // fails Fermat test
+ return true;
+
+ return false;
+ }
+
+/*
+* Miller-Rabin Constructor
+*/
+MillerRabin_Test::MillerRabin_Test(const BigInt& num)
+ {
+ if(num.is_even() || num < 3)
+ throw Invalid_Argument("MillerRabin_Test: Invalid number for testing");
+
+ n = num;
+ n_minus_1 = n - 1;
+ s = low_zero_bits(n_minus_1);
+ r = n_minus_1 >> s;
+
+ pow_mod = Fixed_Exponent_Power_Mod(r, n);
+ reducer = Modular_Reducer(n);
+ }
+
+/*
+* Miller-Rabin Iterations
+*/
+size_t miller_rabin_test_iterations(size_t bits, size_t level)
+ {
+ struct mapping { size_t bits; size_t verify_iter; size_t check_iter; };
+
+ const mapping tests[] = {
+ { 50, 55, 25 },
+ { 100, 38, 22 },
+ { 160, 32, 18 },
+ { 163, 31, 17 },
+ { 168, 30, 16 },
+ { 177, 29, 16 },
+ { 181, 28, 15 },
+ { 185, 27, 15 },
+ { 190, 26, 15 },
+ { 195, 25, 14 },
+ { 201, 24, 14 },
+ { 208, 23, 14 },
+ { 215, 22, 13 },
+ { 222, 21, 13 },
+ { 231, 20, 13 },
+ { 241, 19, 12 },
+ { 252, 18, 12 },
+ { 264, 17, 12 },
+ { 278, 16, 11 },
+ { 294, 15, 10 },
+ { 313, 14, 9 },
+ { 334, 13, 8 },
+ { 360, 12, 8 },
+ { 392, 11, 7 },
+ { 430, 10, 7 },
+ { 479, 9, 6 },
+ { 542, 8, 6 },
+ { 626, 7, 5 },
+ { 746, 6, 4 },
+ { 926, 5, 3 },
+ { 1232, 4, 2 },
+ { 1853, 3, 2 },
+ { 0, 0, 0 }
+ };
+
+ for(size_t i = 0; tests[i].bits; ++i)
+ {
+ if(bits <= tests[i].bits)
+ {
+ if(level >= 2)
+ return tests[i].verify_iter;
+ else if(level == 1)
+ return tests[i].check_iter;
+ else if(level == 0)
+ return std::max<size_t>(tests[i].check_iter / 4, 1);
+ }
+ }
+
+ return level > 0 ? 2 : 1; // for large inputs
+ }
+
+}
+
+/*
+* Return the number of 0 bits at the end of n
+*/
+size_t low_zero_bits(const BigInt& n)
+ {
+ size_t low_zero = 0;
+
+ if(n.is_positive() && n.is_nonzero())
+ {
+ for(size_t i = 0; i != n.size(); ++i)
+ {
+ const word x = n.word_at(i);
+
+ if(x)
+ {
+ low_zero += ctz(x);
+ break;
+ }
+ else
+ low_zero += BOTAN_MP_WORD_BITS;
+ }
+ }
+
+ return low_zero;
+ }
+
+/*
+* Calculate the GCD
+*/
+BigInt gcd(const BigInt& a, const BigInt& b)
+ {
+ if(a.is_zero() || b.is_zero()) return 0;
+ if(a == 1 || b == 1) return 1;
+
+ BigInt x = a, y = b;
+ x.set_sign(BigInt::Positive);
+ y.set_sign(BigInt::Positive);
+ size_t shift = std::min(low_zero_bits(x), low_zero_bits(y));
+
+ x >>= shift;
+ y >>= shift;
+
+ while(x.is_nonzero())
+ {
+ x >>= low_zero_bits(x);
+ y >>= low_zero_bits(y);
+ if(x >= y) { x -= y; x >>= 1; }
+ else { y -= x; y >>= 1; }
+ }
+
+ return (y << shift);
+ }
+
+/*
+* Calculate the LCM
+*/
+BigInt lcm(const BigInt& a, const BigInt& b)
+ {
+ return ((a * b) / gcd(a, b));
+ }
+
+namespace {
+
+/*
+* If the modulus is odd, then we can avoid computing A and C. This is
+* a critical path algorithm in some instances and an odd modulus is
+* the common case for crypto, so worth special casing. See note 14.64
+* in Handbook of Applied Cryptography for more details.
+*/
+BigInt inverse_mod_odd_modulus(const BigInt& n, const BigInt& mod)
+ {
+ BigInt u = mod, v = n;
+ BigInt B = 0, D = 1;
+
+ while(u.is_nonzero())
+ {
+ const size_t u_zero_bits = low_zero_bits(u);
+ u >>= u_zero_bits;
+ for(size_t i = 0; i != u_zero_bits; ++i)
+ {
+ if(B.is_odd())
+ { B -= mod; }
+ B >>= 1;
+ }
+
+ const size_t v_zero_bits = low_zero_bits(v);
+ v >>= v_zero_bits;
+ for(size_t i = 0; i != v_zero_bits; ++i)
+ {
+ if(D.is_odd())
+ { D -= mod; }
+ D >>= 1;
+ }
+
+ if(u >= v) { u -= v; B -= D; }
+ else { v -= u; D -= B; }
+ }
+
+ if(v != 1)
+ return 0; // no modular inverse
+
+ while(D.is_negative()) D += mod;
+ while(D >= mod) D -= mod;
+
+ return D;
+ }
+
+}
+
+/*
+* Find the Modular Inverse
+*/
+BigInt inverse_mod(const BigInt& n, const BigInt& mod)
+ {
+ if(mod.is_zero())
+ throw BigInt::DivideByZero();
+ if(mod.is_negative() || n.is_negative())
+ throw Invalid_Argument("inverse_mod: arguments must be non-negative");
+
+ if(n.is_zero() || (n.is_even() && mod.is_even()))
+ return 0; // fast fail checks
+
+ if(mod.is_odd())
+ return inverse_mod_odd_modulus(n, mod);
+
+ BigInt u = mod, v = n;
+ BigInt A = 1, B = 0, C = 0, D = 1;
+
+ while(u.is_nonzero())
+ {
+ const size_t u_zero_bits = low_zero_bits(u);
+ u >>= u_zero_bits;
+ for(size_t i = 0; i != u_zero_bits; ++i)
+ {
+ if(A.is_odd() || B.is_odd())
+ { A += n; B -= mod; }
+ A >>= 1; B >>= 1;
+ }
+
+ const size_t v_zero_bits = low_zero_bits(v);
+ v >>= v_zero_bits;
+ for(size_t i = 0; i != v_zero_bits; ++i)
+ {
+ if(C.is_odd() || D.is_odd())
+ { C += n; D -= mod; }
+ C >>= 1; D >>= 1;
+ }
+
+ if(u >= v) { u -= v; A -= C; B -= D; }
+ else { v -= u; C -= A; D -= B; }
+ }
+
+ if(v != 1)
+ return 0; // no modular inverse
+
+ while(D.is_negative()) D += mod;
+ while(D >= mod) D -= mod;
+
+ return D;
+ }
+
+word monty_inverse(word input)
+ {
+ word b = input;
+ word x2 = 1, x1 = 0, y2 = 0, y1 = 1;
+
+ // First iteration, a = n+1
+ word q = bigint_divop(1, 0, b);
+ word r = (MP_WORD_MAX - q*b) + 1;
+ word x = x2 - q*x1;
+ word y = y2 - q*y1;
+
+ word a = b;
+ b = r;
+ x2 = x1;
+ x1 = x;
+ y2 = y1;
+ y1 = y;
+
+ while(b > 0)
+ {
+ q = a / b;
+ r = a - q*b;
+ x = x2 - q*x1;
+ y = y2 - q*y1;
+
+ a = b;
+ b = r;
+ x2 = x1;
+ x1 = x;
+ y2 = y1;
+ y1 = y;
+ }
+
+ // Now invert in addition space
+ y2 = (MP_WORD_MAX - y2) + 1;
+
+ return y2;
+ }
+
+/*
+* Modular Exponentiation
+*/
+BigInt power_mod(const BigInt& base, const BigInt& exp, const BigInt& mod)
+ {
+ Power_Mod pow_mod(mod);
+
+ /*
+ * Calling set_base before set_exponent means we end up using a
+ * minimal window. This makes sense given that here we know that any
+ * precomputation is wasted.
+ */
+ pow_mod.set_base(base);
+ pow_mod.set_exponent(exp);
+ return pow_mod.execute();
+ }
+
+/*
+* Test for primaility using Miller-Rabin
+*/
+bool primality_test(const BigInt& n,
+ RandomNumberGenerator& rng,
+ size_t level)
+ {
+ if(n == 2)
+ return true;
+ if(n <= 1 || n.is_even())
+ return false;
+
+ // Fast path testing for small numbers (<= 65521)
+ if(n <= PRIMES[PRIME_TABLE_SIZE-1])
+ {
+ const word num = n.word_at(0);
+
+ for(size_t i = 0; PRIMES[i]; ++i)
+ {
+ if(num == PRIMES[i])
+ return true;
+ if(num < PRIMES[i])
+ return false;
+ }
+
+ return false;
+ }
+
+ if(level > 2)
+ level = 2;
+
+ const size_t PREF_NONCE_BITS = 192;
+
+ const size_t NONCE_BITS = std::min(n.bits() - 2, PREF_NONCE_BITS);
+
+ MillerRabin_Test mr(n);
+
+ const size_t tests = miller_rabin_test_iterations(n.bits(), level);
+
+ BigInt nonce;
+ for(size_t i = 0; i != tests; ++i)
+ {
+ while(nonce < 2 || nonce >= (n-1))
+ nonce.randomize(rng, NONCE_BITS);
+
+ if(mr.is_witness(nonce))
+ return false;
+ }
+ return true;
+ }
+
+}