diff options
author | lloyd <[email protected]> | 2009-11-10 06:29:19 +0000 |
---|---|---|
committer | lloyd <[email protected]> | 2009-11-10 06:29:19 +0000 |
commit | c14e792ba0bc8285014d53f90ee30859c45c2078 (patch) | |
tree | 6cabcc614048d81ea8fa5a5d754c5377a6b9e3ad /src/block/aes_intel/aes_intel.cpp | |
parent | 8666ac6c1ce3e85995faf3fbecb999ac8cf76f69 (diff) |
Fix errors in the AES-256 key schedule for the AES-NI version. Now passes
tests under Intel's emulator.
Document and enable in the engine.
Merge both versions to aes_intel.cpp - some shared code and much similiar
structure which might be sharable via macros.
Diffstat (limited to 'src/block/aes_intel/aes_intel.cpp')
-rw-r--r-- | src/block/aes_intel/aes_intel.cpp | 373 |
1 files changed, 373 insertions, 0 deletions
diff --git a/src/block/aes_intel/aes_intel.cpp b/src/block/aes_intel/aes_intel.cpp new file mode 100644 index 000000000..640a26085 --- /dev/null +++ b/src/block/aes_intel/aes_intel.cpp @@ -0,0 +1,373 @@ +/** +* AES using Intel's AES-NI instructions +* (C) 2009 Jack Lloyd +* +* Distributed under the terms of the Botan license +*/ + +#include <botan/aes_intel.h> +#include <wmmintrin.h> + +namespace Botan { + +namespace { + +__m128i aes_128_key_expansion(__m128i key, __m128i key_with_rcon) + { + key_with_rcon = _mm_shuffle_epi32(key_with_rcon, _MM_SHUFFLE(3,3,3,3)); + key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); + key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); + key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); + return _mm_xor_si128(key, key_with_rcon); + } + +__m128i aes_256_key_expansion(__m128i key, __m128i key2) + { + __m128i key_with_rcon = _mm_aeskeygenassist_si128(key2, 0x00); + key_with_rcon = _mm_shuffle_epi32(key_with_rcon, _MM_SHUFFLE(2,2,2,2)); + + key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); + key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); + key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); + return _mm_xor_si128(key, key_with_rcon); + } + +} + +/** +* AES-128 Encryption +*/ +void AES_128_Intel::encrypt_n(const byte in[], byte out[], u32bit blocks) const + { + const __m128i* in_mm = (const __m128i*)in; + __m128i* out_mm = (__m128i*)out; + + const __m128i* key_mm = (const __m128i*)&EK[0]; + + __m128i K0 = _mm_loadu_si128(key_mm); + __m128i K1 = _mm_loadu_si128(key_mm + 1); + __m128i K2 = _mm_loadu_si128(key_mm + 2); + __m128i K3 = _mm_loadu_si128(key_mm + 3); + __m128i K4 = _mm_loadu_si128(key_mm + 4); + __m128i K5 = _mm_loadu_si128(key_mm + 5); + __m128i K6 = _mm_loadu_si128(key_mm + 6); + __m128i K7 = _mm_loadu_si128(key_mm + 7); + __m128i K8 = _mm_loadu_si128(key_mm + 8); + __m128i K9 = _mm_loadu_si128(key_mm + 9); + __m128i K10 = _mm_loadu_si128(key_mm + 10); + + for(u32bit i = 0; i != blocks; ++i) + { + __m128i B = _mm_loadu_si128(in_mm + i); + + B = _mm_xor_si128(B, K0); + + B = _mm_aesenc_si128(B, K1); + B = _mm_aesenc_si128(B, K2); + B = _mm_aesenc_si128(B, K3); + B = _mm_aesenc_si128(B, K4); + B = _mm_aesenc_si128(B, K5); + B = _mm_aesenc_si128(B, K6); + B = _mm_aesenc_si128(B, K7); + B = _mm_aesenc_si128(B, K8); + B = _mm_aesenc_si128(B, K9); + B = _mm_aesenclast_si128(B, K10); + + _mm_storeu_si128(out_mm + i, B); + + in += BLOCK_SIZE; + out += BLOCK_SIZE; + } + } + +/** +* AES-128 Decryption +*/ +void AES_128_Intel::decrypt_n(const byte in[], byte out[], u32bit blocks) const + { + const __m128i* in_mm = (const __m128i*)in; + __m128i* out_mm = (__m128i*)out; + + const __m128i* key_mm = (const __m128i*)&DK[0]; + + __m128i K0 = _mm_loadu_si128(key_mm); + __m128i K1 = _mm_loadu_si128(key_mm + 1); + __m128i K2 = _mm_loadu_si128(key_mm + 2); + __m128i K3 = _mm_loadu_si128(key_mm + 3); + __m128i K4 = _mm_loadu_si128(key_mm + 4); + __m128i K5 = _mm_loadu_si128(key_mm + 5); + __m128i K6 = _mm_loadu_si128(key_mm + 6); + __m128i K7 = _mm_loadu_si128(key_mm + 7); + __m128i K8 = _mm_loadu_si128(key_mm + 8); + __m128i K9 = _mm_loadu_si128(key_mm + 9); + __m128i K10 = _mm_loadu_si128(key_mm + 10); + + for(u32bit i = 0; i != blocks; ++i) + { + __m128i B = _mm_loadu_si128(in_mm + i); + + B = _mm_xor_si128(B, K0); + + B = _mm_aesdec_si128(B, K1); + B = _mm_aesdec_si128(B, K2); + B = _mm_aesdec_si128(B, K3); + B = _mm_aesdec_si128(B, K4); + B = _mm_aesdec_si128(B, K5); + B = _mm_aesdec_si128(B, K6); + B = _mm_aesdec_si128(B, K7); + B = _mm_aesdec_si128(B, K8); + B = _mm_aesdec_si128(B, K9); + B = _mm_aesdeclast_si128(B, K10); + + _mm_storeu_si128(out_mm + i, B); + + in += BLOCK_SIZE; + out += BLOCK_SIZE; + } + } + +/** +* AES-128 Key Schedule +*/ +void AES_128_Intel::key_schedule(const byte key[], u32bit) + { + const __m128i* key_mm = (const __m128i*)key; + + #define AES_128_key_exp(K, RCON) \ + aes_128_key_expansion(K, _mm_aeskeygenassist_si128(K, RCON)) + + __m128i K0 = _mm_loadu_si128(key_mm); + __m128i K1 = AES_128_key_exp(K0, 0x01); + __m128i K2 = AES_128_key_exp(K1, 0x02); + __m128i K3 = AES_128_key_exp(K2, 0x04); + __m128i K4 = AES_128_key_exp(K3, 0x08); + __m128i K5 = AES_128_key_exp(K4, 0x10); + __m128i K6 = AES_128_key_exp(K5, 0x20); + __m128i K7 = AES_128_key_exp(K6, 0x40); + __m128i K8 = AES_128_key_exp(K7, 0x80); + __m128i K9 = AES_128_key_exp(K8, 0x1B); + __m128i K10 = AES_128_key_exp(K9, 0x36); + + __m128i* EK_mm = (__m128i*)&EK[0]; + _mm_storeu_si128(EK_mm , K0); + _mm_storeu_si128(EK_mm + 1, K1); + _mm_storeu_si128(EK_mm + 2, K2); + _mm_storeu_si128(EK_mm + 3, K3); + _mm_storeu_si128(EK_mm + 4, K4); + _mm_storeu_si128(EK_mm + 5, K5); + _mm_storeu_si128(EK_mm + 6, K6); + _mm_storeu_si128(EK_mm + 7, K7); + _mm_storeu_si128(EK_mm + 8, K8); + _mm_storeu_si128(EK_mm + 9, K9); + _mm_storeu_si128(EK_mm + 10, K10); + + // Now generate decryption keys + + __m128i* DK_mm = (__m128i*)&DK[0]; + _mm_storeu_si128(DK_mm , K10); + _mm_storeu_si128(DK_mm + 1, _mm_aesimc_si128(K9)); + _mm_storeu_si128(DK_mm + 2, _mm_aesimc_si128(K8)); + _mm_storeu_si128(DK_mm + 3, _mm_aesimc_si128(K7)); + _mm_storeu_si128(DK_mm + 4, _mm_aesimc_si128(K6)); + _mm_storeu_si128(DK_mm + 5, _mm_aesimc_si128(K5)); + _mm_storeu_si128(DK_mm + 6, _mm_aesimc_si128(K4)); + _mm_storeu_si128(DK_mm + 7, _mm_aesimc_si128(K3)); + _mm_storeu_si128(DK_mm + 8, _mm_aesimc_si128(K2)); + _mm_storeu_si128(DK_mm + 9, _mm_aesimc_si128(K1)); + _mm_storeu_si128(DK_mm + 10, K0); + } + +/** +* Clear memory of sensitive data +*/ +void AES_128_Intel::clear() + { + EK.clear(); + DK.clear(); + } + +/** +* AES-256 Encryption +*/ +void AES_256_Intel::encrypt_n(const byte in[], byte out[], u32bit blocks) const + { + const __m128i* in_mm = (const __m128i*)in; + __m128i* out_mm = (__m128i*)out; + + const __m128i* key_mm = (const __m128i*)&EK[0]; + + __m128i K0 = _mm_loadu_si128(key_mm); + __m128i K1 = _mm_loadu_si128(key_mm + 1); + __m128i K2 = _mm_loadu_si128(key_mm + 2); + __m128i K3 = _mm_loadu_si128(key_mm + 3); + __m128i K4 = _mm_loadu_si128(key_mm + 4); + __m128i K5 = _mm_loadu_si128(key_mm + 5); + __m128i K6 = _mm_loadu_si128(key_mm + 6); + __m128i K7 = _mm_loadu_si128(key_mm + 7); + __m128i K8 = _mm_loadu_si128(key_mm + 8); + __m128i K9 = _mm_loadu_si128(key_mm + 9); + __m128i K10 = _mm_loadu_si128(key_mm + 10); + __m128i K11 = _mm_loadu_si128(key_mm + 11); + __m128i K12 = _mm_loadu_si128(key_mm + 12); + __m128i K13 = _mm_loadu_si128(key_mm + 13); + __m128i K14 = _mm_loadu_si128(key_mm + 14); + + for(u32bit i = 0; i != blocks; ++i) + { + __m128i B = _mm_loadu_si128(in_mm + i); + + B = _mm_xor_si128(B, K0); + + B = _mm_aesenc_si128(B, K1); + B = _mm_aesenc_si128(B, K2); + B = _mm_aesenc_si128(B, K3); + B = _mm_aesenc_si128(B, K4); + B = _mm_aesenc_si128(B, K5); + B = _mm_aesenc_si128(B, K6); + B = _mm_aesenc_si128(B, K7); + B = _mm_aesenc_si128(B, K8); + B = _mm_aesenc_si128(B, K9); + B = _mm_aesenc_si128(B, K10); + B = _mm_aesenc_si128(B, K11); + B = _mm_aesenc_si128(B, K12); + B = _mm_aesenc_si128(B, K13); + B = _mm_aesenclast_si128(B, K14); + + _mm_storeu_si128(out_mm + i, B); + + in += BLOCK_SIZE; + out += BLOCK_SIZE; + } + } + +/** +* AES-256 Decryption +*/ +void AES_256_Intel::decrypt_n(const byte in[], byte out[], u32bit blocks) const + { + const __m128i* in_mm = (const __m128i*)in; + __m128i* out_mm = (__m128i*)out; + + const __m128i* key_mm = (const __m128i*)&DK[0]; + + __m128i K0 = _mm_loadu_si128(key_mm); + __m128i K1 = _mm_loadu_si128(key_mm + 1); + __m128i K2 = _mm_loadu_si128(key_mm + 2); + __m128i K3 = _mm_loadu_si128(key_mm + 3); + __m128i K4 = _mm_loadu_si128(key_mm + 4); + __m128i K5 = _mm_loadu_si128(key_mm + 5); + __m128i K6 = _mm_loadu_si128(key_mm + 6); + __m128i K7 = _mm_loadu_si128(key_mm + 7); + __m128i K8 = _mm_loadu_si128(key_mm + 8); + __m128i K9 = _mm_loadu_si128(key_mm + 9); + __m128i K10 = _mm_loadu_si128(key_mm + 10); + __m128i K11 = _mm_loadu_si128(key_mm + 11); + __m128i K12 = _mm_loadu_si128(key_mm + 12); + __m128i K13 = _mm_loadu_si128(key_mm + 13); + __m128i K14 = _mm_loadu_si128(key_mm + 14); + + for(u32bit i = 0; i != blocks; ++i) + { + __m128i B = _mm_loadu_si128(in_mm + i); + + B = _mm_xor_si128(B, K0); + + B = _mm_aesdec_si128(B, K1); + B = _mm_aesdec_si128(B, K2); + B = _mm_aesdec_si128(B, K3); + B = _mm_aesdec_si128(B, K4); + B = _mm_aesdec_si128(B, K5); + B = _mm_aesdec_si128(B, K6); + B = _mm_aesdec_si128(B, K7); + B = _mm_aesdec_si128(B, K8); + B = _mm_aesdec_si128(B, K9); + B = _mm_aesdec_si128(B, K10); + B = _mm_aesdec_si128(B, K11); + B = _mm_aesdec_si128(B, K12); + B = _mm_aesdec_si128(B, K13); + B = _mm_aesdeclast_si128(B, K14); + + _mm_storeu_si128(out_mm + i, B); + + in += BLOCK_SIZE; + out += BLOCK_SIZE; + } + } + +/** +* AES-256 Key Schedule +*/ +void AES_256_Intel::key_schedule(const byte key[], u32bit) + { + const __m128i* key_mm = (const __m128i*)key; + + __m128i K0 = _mm_loadu_si128(key_mm); + __m128i K1 = _mm_loadu_si128(key_mm + 1); + + __m128i K2 = aes_128_key_expansion(K0, _mm_aeskeygenassist_si128(K1, 0x01)); + __m128i K3 = aes_256_key_expansion(K1, K2); + + __m128i K4 = aes_128_key_expansion(K2, _mm_aeskeygenassist_si128(K3, 0x02)); + __m128i K5 = aes_256_key_expansion(K3, K4); + + __m128i K6 = aes_128_key_expansion(K4, _mm_aeskeygenassist_si128(K5, 0x04)); + __m128i K7 = aes_256_key_expansion(K5, K6); + + __m128i K8 = aes_128_key_expansion(K6, _mm_aeskeygenassist_si128(K7, 0x08)); + __m128i K9 = aes_256_key_expansion(K7, K8); + + __m128i K10 = aes_128_key_expansion(K8, _mm_aeskeygenassist_si128(K9, 0x10)); + __m128i K11 = aes_256_key_expansion(K9, K10); + + __m128i K12 = aes_128_key_expansion(K10, _mm_aeskeygenassist_si128(K11, 0x20)); + __m128i K13 = aes_256_key_expansion(K11, K12); + + __m128i K14 = aes_128_key_expansion(K12, _mm_aeskeygenassist_si128(K13, 0x40)); + + __m128i* EK_mm = (__m128i*)&EK[0]; + _mm_storeu_si128(EK_mm , K0); + _mm_storeu_si128(EK_mm + 1, K1); + _mm_storeu_si128(EK_mm + 2, K2); + _mm_storeu_si128(EK_mm + 3, K3); + _mm_storeu_si128(EK_mm + 4, K4); + _mm_storeu_si128(EK_mm + 5, K5); + _mm_storeu_si128(EK_mm + 6, K6); + _mm_storeu_si128(EK_mm + 7, K7); + _mm_storeu_si128(EK_mm + 8, K8); + _mm_storeu_si128(EK_mm + 9, K9); + _mm_storeu_si128(EK_mm + 10, K10); + _mm_storeu_si128(EK_mm + 11, K11); + _mm_storeu_si128(EK_mm + 12, K12); + _mm_storeu_si128(EK_mm + 13, K13); + _mm_storeu_si128(EK_mm + 14, K14); + + // Now generate decryption keys + + __m128i* DK_mm = (__m128i*)&DK[0]; + _mm_storeu_si128(DK_mm , K14); + _mm_storeu_si128(DK_mm + 1, _mm_aesimc_si128(K13)); + _mm_storeu_si128(DK_mm + 2, _mm_aesimc_si128(K12)); + _mm_storeu_si128(DK_mm + 3, _mm_aesimc_si128(K11)); + _mm_storeu_si128(DK_mm + 4, _mm_aesimc_si128(K10)); + _mm_storeu_si128(DK_mm + 5, _mm_aesimc_si128(K9)); + _mm_storeu_si128(DK_mm + 6, _mm_aesimc_si128(K8)); + _mm_storeu_si128(DK_mm + 7, _mm_aesimc_si128(K7)); + _mm_storeu_si128(DK_mm + 8, _mm_aesimc_si128(K6)); + _mm_storeu_si128(DK_mm + 9, _mm_aesimc_si128(K5)); + _mm_storeu_si128(DK_mm + 10, _mm_aesimc_si128(K4)); + _mm_storeu_si128(DK_mm + 11, _mm_aesimc_si128(K3)); + _mm_storeu_si128(DK_mm + 12, _mm_aesimc_si128(K2)); + _mm_storeu_si128(DK_mm + 13, _mm_aesimc_si128(K1)); + _mm_storeu_si128(DK_mm + 14, K0); + } + +/** +* Clear memory of sensitive data +*/ +void AES_256_Intel::clear() + { + EK.clear(); + DK.clear(); + } + +} |