aboutsummaryrefslogtreecommitdiffstats
path: root/src/block/aes_intel/aes_intel.cpp
diff options
context:
space:
mode:
authorlloyd <[email protected]>2009-11-10 06:29:19 +0000
committerlloyd <[email protected]>2009-11-10 06:29:19 +0000
commitc14e792ba0bc8285014d53f90ee30859c45c2078 (patch)
tree6cabcc614048d81ea8fa5a5d754c5377a6b9e3ad /src/block/aes_intel/aes_intel.cpp
parent8666ac6c1ce3e85995faf3fbecb999ac8cf76f69 (diff)
Fix errors in the AES-256 key schedule for the AES-NI version. Now passes
tests under Intel's emulator. Document and enable in the engine. Merge both versions to aes_intel.cpp - some shared code and much similiar structure which might be sharable via macros.
Diffstat (limited to 'src/block/aes_intel/aes_intel.cpp')
-rw-r--r--src/block/aes_intel/aes_intel.cpp373
1 files changed, 373 insertions, 0 deletions
diff --git a/src/block/aes_intel/aes_intel.cpp b/src/block/aes_intel/aes_intel.cpp
new file mode 100644
index 000000000..640a26085
--- /dev/null
+++ b/src/block/aes_intel/aes_intel.cpp
@@ -0,0 +1,373 @@
+/**
+* AES using Intel's AES-NI instructions
+* (C) 2009 Jack Lloyd
+*
+* Distributed under the terms of the Botan license
+*/
+
+#include <botan/aes_intel.h>
+#include <wmmintrin.h>
+
+namespace Botan {
+
+namespace {
+
+__m128i aes_128_key_expansion(__m128i key, __m128i key_with_rcon)
+ {
+ key_with_rcon = _mm_shuffle_epi32(key_with_rcon, _MM_SHUFFLE(3,3,3,3));
+ key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
+ key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
+ key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
+ return _mm_xor_si128(key, key_with_rcon);
+ }
+
+__m128i aes_256_key_expansion(__m128i key, __m128i key2)
+ {
+ __m128i key_with_rcon = _mm_aeskeygenassist_si128(key2, 0x00);
+ key_with_rcon = _mm_shuffle_epi32(key_with_rcon, _MM_SHUFFLE(2,2,2,2));
+
+ key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
+ key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
+ key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
+ return _mm_xor_si128(key, key_with_rcon);
+ }
+
+}
+
+/**
+* AES-128 Encryption
+*/
+void AES_128_Intel::encrypt_n(const byte in[], byte out[], u32bit blocks) const
+ {
+ const __m128i* in_mm = (const __m128i*)in;
+ __m128i* out_mm = (__m128i*)out;
+
+ const __m128i* key_mm = (const __m128i*)&EK[0];
+
+ __m128i K0 = _mm_loadu_si128(key_mm);
+ __m128i K1 = _mm_loadu_si128(key_mm + 1);
+ __m128i K2 = _mm_loadu_si128(key_mm + 2);
+ __m128i K3 = _mm_loadu_si128(key_mm + 3);
+ __m128i K4 = _mm_loadu_si128(key_mm + 4);
+ __m128i K5 = _mm_loadu_si128(key_mm + 5);
+ __m128i K6 = _mm_loadu_si128(key_mm + 6);
+ __m128i K7 = _mm_loadu_si128(key_mm + 7);
+ __m128i K8 = _mm_loadu_si128(key_mm + 8);
+ __m128i K9 = _mm_loadu_si128(key_mm + 9);
+ __m128i K10 = _mm_loadu_si128(key_mm + 10);
+
+ for(u32bit i = 0; i != blocks; ++i)
+ {
+ __m128i B = _mm_loadu_si128(in_mm + i);
+
+ B = _mm_xor_si128(B, K0);
+
+ B = _mm_aesenc_si128(B, K1);
+ B = _mm_aesenc_si128(B, K2);
+ B = _mm_aesenc_si128(B, K3);
+ B = _mm_aesenc_si128(B, K4);
+ B = _mm_aesenc_si128(B, K5);
+ B = _mm_aesenc_si128(B, K6);
+ B = _mm_aesenc_si128(B, K7);
+ B = _mm_aesenc_si128(B, K8);
+ B = _mm_aesenc_si128(B, K9);
+ B = _mm_aesenclast_si128(B, K10);
+
+ _mm_storeu_si128(out_mm + i, B);
+
+ in += BLOCK_SIZE;
+ out += BLOCK_SIZE;
+ }
+ }
+
+/**
+* AES-128 Decryption
+*/
+void AES_128_Intel::decrypt_n(const byte in[], byte out[], u32bit blocks) const
+ {
+ const __m128i* in_mm = (const __m128i*)in;
+ __m128i* out_mm = (__m128i*)out;
+
+ const __m128i* key_mm = (const __m128i*)&DK[0];
+
+ __m128i K0 = _mm_loadu_si128(key_mm);
+ __m128i K1 = _mm_loadu_si128(key_mm + 1);
+ __m128i K2 = _mm_loadu_si128(key_mm + 2);
+ __m128i K3 = _mm_loadu_si128(key_mm + 3);
+ __m128i K4 = _mm_loadu_si128(key_mm + 4);
+ __m128i K5 = _mm_loadu_si128(key_mm + 5);
+ __m128i K6 = _mm_loadu_si128(key_mm + 6);
+ __m128i K7 = _mm_loadu_si128(key_mm + 7);
+ __m128i K8 = _mm_loadu_si128(key_mm + 8);
+ __m128i K9 = _mm_loadu_si128(key_mm + 9);
+ __m128i K10 = _mm_loadu_si128(key_mm + 10);
+
+ for(u32bit i = 0; i != blocks; ++i)
+ {
+ __m128i B = _mm_loadu_si128(in_mm + i);
+
+ B = _mm_xor_si128(B, K0);
+
+ B = _mm_aesdec_si128(B, K1);
+ B = _mm_aesdec_si128(B, K2);
+ B = _mm_aesdec_si128(B, K3);
+ B = _mm_aesdec_si128(B, K4);
+ B = _mm_aesdec_si128(B, K5);
+ B = _mm_aesdec_si128(B, K6);
+ B = _mm_aesdec_si128(B, K7);
+ B = _mm_aesdec_si128(B, K8);
+ B = _mm_aesdec_si128(B, K9);
+ B = _mm_aesdeclast_si128(B, K10);
+
+ _mm_storeu_si128(out_mm + i, B);
+
+ in += BLOCK_SIZE;
+ out += BLOCK_SIZE;
+ }
+ }
+
+/**
+* AES-128 Key Schedule
+*/
+void AES_128_Intel::key_schedule(const byte key[], u32bit)
+ {
+ const __m128i* key_mm = (const __m128i*)key;
+
+ #define AES_128_key_exp(K, RCON) \
+ aes_128_key_expansion(K, _mm_aeskeygenassist_si128(K, RCON))
+
+ __m128i K0 = _mm_loadu_si128(key_mm);
+ __m128i K1 = AES_128_key_exp(K0, 0x01);
+ __m128i K2 = AES_128_key_exp(K1, 0x02);
+ __m128i K3 = AES_128_key_exp(K2, 0x04);
+ __m128i K4 = AES_128_key_exp(K3, 0x08);
+ __m128i K5 = AES_128_key_exp(K4, 0x10);
+ __m128i K6 = AES_128_key_exp(K5, 0x20);
+ __m128i K7 = AES_128_key_exp(K6, 0x40);
+ __m128i K8 = AES_128_key_exp(K7, 0x80);
+ __m128i K9 = AES_128_key_exp(K8, 0x1B);
+ __m128i K10 = AES_128_key_exp(K9, 0x36);
+
+ __m128i* EK_mm = (__m128i*)&EK[0];
+ _mm_storeu_si128(EK_mm , K0);
+ _mm_storeu_si128(EK_mm + 1, K1);
+ _mm_storeu_si128(EK_mm + 2, K2);
+ _mm_storeu_si128(EK_mm + 3, K3);
+ _mm_storeu_si128(EK_mm + 4, K4);
+ _mm_storeu_si128(EK_mm + 5, K5);
+ _mm_storeu_si128(EK_mm + 6, K6);
+ _mm_storeu_si128(EK_mm + 7, K7);
+ _mm_storeu_si128(EK_mm + 8, K8);
+ _mm_storeu_si128(EK_mm + 9, K9);
+ _mm_storeu_si128(EK_mm + 10, K10);
+
+ // Now generate decryption keys
+
+ __m128i* DK_mm = (__m128i*)&DK[0];
+ _mm_storeu_si128(DK_mm , K10);
+ _mm_storeu_si128(DK_mm + 1, _mm_aesimc_si128(K9));
+ _mm_storeu_si128(DK_mm + 2, _mm_aesimc_si128(K8));
+ _mm_storeu_si128(DK_mm + 3, _mm_aesimc_si128(K7));
+ _mm_storeu_si128(DK_mm + 4, _mm_aesimc_si128(K6));
+ _mm_storeu_si128(DK_mm + 5, _mm_aesimc_si128(K5));
+ _mm_storeu_si128(DK_mm + 6, _mm_aesimc_si128(K4));
+ _mm_storeu_si128(DK_mm + 7, _mm_aesimc_si128(K3));
+ _mm_storeu_si128(DK_mm + 8, _mm_aesimc_si128(K2));
+ _mm_storeu_si128(DK_mm + 9, _mm_aesimc_si128(K1));
+ _mm_storeu_si128(DK_mm + 10, K0);
+ }
+
+/**
+* Clear memory of sensitive data
+*/
+void AES_128_Intel::clear()
+ {
+ EK.clear();
+ DK.clear();
+ }
+
+/**
+* AES-256 Encryption
+*/
+void AES_256_Intel::encrypt_n(const byte in[], byte out[], u32bit blocks) const
+ {
+ const __m128i* in_mm = (const __m128i*)in;
+ __m128i* out_mm = (__m128i*)out;
+
+ const __m128i* key_mm = (const __m128i*)&EK[0];
+
+ __m128i K0 = _mm_loadu_si128(key_mm);
+ __m128i K1 = _mm_loadu_si128(key_mm + 1);
+ __m128i K2 = _mm_loadu_si128(key_mm + 2);
+ __m128i K3 = _mm_loadu_si128(key_mm + 3);
+ __m128i K4 = _mm_loadu_si128(key_mm + 4);
+ __m128i K5 = _mm_loadu_si128(key_mm + 5);
+ __m128i K6 = _mm_loadu_si128(key_mm + 6);
+ __m128i K7 = _mm_loadu_si128(key_mm + 7);
+ __m128i K8 = _mm_loadu_si128(key_mm + 8);
+ __m128i K9 = _mm_loadu_si128(key_mm + 9);
+ __m128i K10 = _mm_loadu_si128(key_mm + 10);
+ __m128i K11 = _mm_loadu_si128(key_mm + 11);
+ __m128i K12 = _mm_loadu_si128(key_mm + 12);
+ __m128i K13 = _mm_loadu_si128(key_mm + 13);
+ __m128i K14 = _mm_loadu_si128(key_mm + 14);
+
+ for(u32bit i = 0; i != blocks; ++i)
+ {
+ __m128i B = _mm_loadu_si128(in_mm + i);
+
+ B = _mm_xor_si128(B, K0);
+
+ B = _mm_aesenc_si128(B, K1);
+ B = _mm_aesenc_si128(B, K2);
+ B = _mm_aesenc_si128(B, K3);
+ B = _mm_aesenc_si128(B, K4);
+ B = _mm_aesenc_si128(B, K5);
+ B = _mm_aesenc_si128(B, K6);
+ B = _mm_aesenc_si128(B, K7);
+ B = _mm_aesenc_si128(B, K8);
+ B = _mm_aesenc_si128(B, K9);
+ B = _mm_aesenc_si128(B, K10);
+ B = _mm_aesenc_si128(B, K11);
+ B = _mm_aesenc_si128(B, K12);
+ B = _mm_aesenc_si128(B, K13);
+ B = _mm_aesenclast_si128(B, K14);
+
+ _mm_storeu_si128(out_mm + i, B);
+
+ in += BLOCK_SIZE;
+ out += BLOCK_SIZE;
+ }
+ }
+
+/**
+* AES-256 Decryption
+*/
+void AES_256_Intel::decrypt_n(const byte in[], byte out[], u32bit blocks) const
+ {
+ const __m128i* in_mm = (const __m128i*)in;
+ __m128i* out_mm = (__m128i*)out;
+
+ const __m128i* key_mm = (const __m128i*)&DK[0];
+
+ __m128i K0 = _mm_loadu_si128(key_mm);
+ __m128i K1 = _mm_loadu_si128(key_mm + 1);
+ __m128i K2 = _mm_loadu_si128(key_mm + 2);
+ __m128i K3 = _mm_loadu_si128(key_mm + 3);
+ __m128i K4 = _mm_loadu_si128(key_mm + 4);
+ __m128i K5 = _mm_loadu_si128(key_mm + 5);
+ __m128i K6 = _mm_loadu_si128(key_mm + 6);
+ __m128i K7 = _mm_loadu_si128(key_mm + 7);
+ __m128i K8 = _mm_loadu_si128(key_mm + 8);
+ __m128i K9 = _mm_loadu_si128(key_mm + 9);
+ __m128i K10 = _mm_loadu_si128(key_mm + 10);
+ __m128i K11 = _mm_loadu_si128(key_mm + 11);
+ __m128i K12 = _mm_loadu_si128(key_mm + 12);
+ __m128i K13 = _mm_loadu_si128(key_mm + 13);
+ __m128i K14 = _mm_loadu_si128(key_mm + 14);
+
+ for(u32bit i = 0; i != blocks; ++i)
+ {
+ __m128i B = _mm_loadu_si128(in_mm + i);
+
+ B = _mm_xor_si128(B, K0);
+
+ B = _mm_aesdec_si128(B, K1);
+ B = _mm_aesdec_si128(B, K2);
+ B = _mm_aesdec_si128(B, K3);
+ B = _mm_aesdec_si128(B, K4);
+ B = _mm_aesdec_si128(B, K5);
+ B = _mm_aesdec_si128(B, K6);
+ B = _mm_aesdec_si128(B, K7);
+ B = _mm_aesdec_si128(B, K8);
+ B = _mm_aesdec_si128(B, K9);
+ B = _mm_aesdec_si128(B, K10);
+ B = _mm_aesdec_si128(B, K11);
+ B = _mm_aesdec_si128(B, K12);
+ B = _mm_aesdec_si128(B, K13);
+ B = _mm_aesdeclast_si128(B, K14);
+
+ _mm_storeu_si128(out_mm + i, B);
+
+ in += BLOCK_SIZE;
+ out += BLOCK_SIZE;
+ }
+ }
+
+/**
+* AES-256 Key Schedule
+*/
+void AES_256_Intel::key_schedule(const byte key[], u32bit)
+ {
+ const __m128i* key_mm = (const __m128i*)key;
+
+ __m128i K0 = _mm_loadu_si128(key_mm);
+ __m128i K1 = _mm_loadu_si128(key_mm + 1);
+
+ __m128i K2 = aes_128_key_expansion(K0, _mm_aeskeygenassist_si128(K1, 0x01));
+ __m128i K3 = aes_256_key_expansion(K1, K2);
+
+ __m128i K4 = aes_128_key_expansion(K2, _mm_aeskeygenassist_si128(K3, 0x02));
+ __m128i K5 = aes_256_key_expansion(K3, K4);
+
+ __m128i K6 = aes_128_key_expansion(K4, _mm_aeskeygenassist_si128(K5, 0x04));
+ __m128i K7 = aes_256_key_expansion(K5, K6);
+
+ __m128i K8 = aes_128_key_expansion(K6, _mm_aeskeygenassist_si128(K7, 0x08));
+ __m128i K9 = aes_256_key_expansion(K7, K8);
+
+ __m128i K10 = aes_128_key_expansion(K8, _mm_aeskeygenassist_si128(K9, 0x10));
+ __m128i K11 = aes_256_key_expansion(K9, K10);
+
+ __m128i K12 = aes_128_key_expansion(K10, _mm_aeskeygenassist_si128(K11, 0x20));
+ __m128i K13 = aes_256_key_expansion(K11, K12);
+
+ __m128i K14 = aes_128_key_expansion(K12, _mm_aeskeygenassist_si128(K13, 0x40));
+
+ __m128i* EK_mm = (__m128i*)&EK[0];
+ _mm_storeu_si128(EK_mm , K0);
+ _mm_storeu_si128(EK_mm + 1, K1);
+ _mm_storeu_si128(EK_mm + 2, K2);
+ _mm_storeu_si128(EK_mm + 3, K3);
+ _mm_storeu_si128(EK_mm + 4, K4);
+ _mm_storeu_si128(EK_mm + 5, K5);
+ _mm_storeu_si128(EK_mm + 6, K6);
+ _mm_storeu_si128(EK_mm + 7, K7);
+ _mm_storeu_si128(EK_mm + 8, K8);
+ _mm_storeu_si128(EK_mm + 9, K9);
+ _mm_storeu_si128(EK_mm + 10, K10);
+ _mm_storeu_si128(EK_mm + 11, K11);
+ _mm_storeu_si128(EK_mm + 12, K12);
+ _mm_storeu_si128(EK_mm + 13, K13);
+ _mm_storeu_si128(EK_mm + 14, K14);
+
+ // Now generate decryption keys
+
+ __m128i* DK_mm = (__m128i*)&DK[0];
+ _mm_storeu_si128(DK_mm , K14);
+ _mm_storeu_si128(DK_mm + 1, _mm_aesimc_si128(K13));
+ _mm_storeu_si128(DK_mm + 2, _mm_aesimc_si128(K12));
+ _mm_storeu_si128(DK_mm + 3, _mm_aesimc_si128(K11));
+ _mm_storeu_si128(DK_mm + 4, _mm_aesimc_si128(K10));
+ _mm_storeu_si128(DK_mm + 5, _mm_aesimc_si128(K9));
+ _mm_storeu_si128(DK_mm + 6, _mm_aesimc_si128(K8));
+ _mm_storeu_si128(DK_mm + 7, _mm_aesimc_si128(K7));
+ _mm_storeu_si128(DK_mm + 8, _mm_aesimc_si128(K6));
+ _mm_storeu_si128(DK_mm + 9, _mm_aesimc_si128(K5));
+ _mm_storeu_si128(DK_mm + 10, _mm_aesimc_si128(K4));
+ _mm_storeu_si128(DK_mm + 11, _mm_aesimc_si128(K3));
+ _mm_storeu_si128(DK_mm + 12, _mm_aesimc_si128(K2));
+ _mm_storeu_si128(DK_mm + 13, _mm_aesimc_si128(K1));
+ _mm_storeu_si128(DK_mm + 14, K0);
+ }
+
+/**
+* Clear memory of sensitive data
+*/
+void AES_256_Intel::clear()
+ {
+ EK.clear();
+ DK.clear();
+ }
+
+}