diff options
author | lloyd <[email protected]> | 2011-04-08 14:57:49 +0000 |
---|---|---|
committer | lloyd <[email protected]> | 2011-04-08 14:57:49 +0000 |
commit | fc62f7f284387a180e42402e8706965a666efba7 (patch) | |
tree | 9abe74c670993c111bd3a5bf5fb568767f9e75be /doc/examples/factor.cpp | |
parent | 438f3eb73e494fcab82b239452d712bec06f48c9 (diff) |
More pubkey doc updates
Diffstat (limited to 'doc/examples/factor.cpp')
-rw-r--r-- | doc/examples/factor.cpp | 154 |
1 files changed, 154 insertions, 0 deletions
diff --git a/doc/examples/factor.cpp b/doc/examples/factor.cpp new file mode 100644 index 000000000..58b12d9a5 --- /dev/null +++ b/doc/examples/factor.cpp @@ -0,0 +1,154 @@ +/* +* (C) 2009-2010 Jack Lloyd +* +* Distributed under the terms of the Botan license +* +* Factor integers using a combination of trial division by small +* primes, and Pollard's Rho algorithm +*/ + +#include <botan/botan.h> +#include <botan/reducer.h> +#include <botan/numthry.h> +using namespace Botan; + +#include <algorithm> +#include <iostream> +#include <iterator> + +namespace { + +/* +* Pollard's Rho algorithm, as described in the MIT algorithms book. We +* use (x^2+x) mod n instead of (x*2-1) mod n as the random function, +* it _seems_ to lead to faster factorization for the values I tried. +*/ +BigInt rho(const BigInt& n, RandomNumberGenerator& rng) + { + BigInt x = BigInt::random_integer(rng, 0, n-1); + BigInt y = x; + BigInt d = 0; + + Modular_Reducer mod_n(n); + + u32bit i = 1, k = 2; + while(true) + { + i++; + + if(i == 0) // overflow, bail out + break; + + x = mod_n.multiply((x + 1), x); + + d = gcd(y - x, n); + if(d != 1 && d != n) + return d; + + if(i == k) + { + y = x; + k = 2*k; + } + } + return 0; + } + +// Remove (and return) any small (< 2^16) factors +std::vector<BigInt> remove_small_factors(BigInt& n) + { + std::vector<BigInt> factors; + + while(n.is_even()) + { + factors.push_back(2); + n /= 2; + } + + for(u32bit j = 0; j != PRIME_TABLE_SIZE; j++) + { + if(n < PRIMES[j]) + break; + + BigInt x = gcd(n, PRIMES[j]); + + if(x != 1) + { + n /= x; + + u32bit occurs = 0; + while(x != 1) + { + x /= PRIMES[j]; + occurs++; + } + + for(u32bit k = 0; k != occurs; k++) + factors.push_back(PRIMES[j]); + } + } + + return factors; + } + +std::vector<BigInt> factorize(const BigInt& n_in, + RandomNumberGenerator& rng) + { + BigInt n = n_in; + std::vector<BigInt> factors = remove_small_factors(n); + + while(n != 1) + { + if(check_prime(n, rng)) + { + factors.push_back(n); + break; + } + + BigInt a_factor = 0; + while(a_factor == 0) + a_factor = rho(n, rng); + + std::vector<BigInt> rho_factored = factorize(a_factor, rng); + for(u32bit j = 0; j != rho_factored.size(); j++) + factors.push_back(rho_factored[j]); + + n /= a_factor; + } + return factors; + } + +} + +int main(int argc, char* argv[]) + { + if(argc != 2) + { + std::cerr << "Usage: " << argv[0] << " integer\n"; + return 1; + } + + Botan::LibraryInitializer init; + + try + { + BigInt n(argv[1]); + + AutoSeeded_RNG rng; + + std::vector<BigInt> factors = factorize(n, rng); + std::sort(factors.begin(), factors.end()); + + std::cout << n << ": "; + std::copy(factors.begin(), + factors.end(), + std::ostream_iterator<BigInt>(std::cout, " ")); + std::cout << "\n"; + } + catch(std::exception& e) + { + std::cout << e.what() << std::endl; + return 1; + } + return 0; + } |