1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
|
/* vfr.c
Copyright (c) 2003-2019 HandBrake Team
This file is part of the HandBrake source code
Homepage: <http://handbrake.fr/>.
It may be used under the terms of the GNU General Public License v2.
For full terms see the file COPYING file or visit http://www.gnu.org/licenses/gpl-2.0.html
*/
#include "hb.h"
//#define HB_DEBUG_CFR_DROPS 1
#define MAX_FRAME_ANALYSIS_DEPTH 10
struct hb_filter_private_s
{
hb_job_t * job;
int cfr;
hb_rational_t input_vrate;
hb_rational_t vrate;
hb_fifo_t * delay_queue;
int dropped_frames;
int extended_frames;
int64_t last_start[4];
int64_t last_stop[4];
int64_t lost_time[4];
int64_t total_lost_time;
int64_t total_gained_time;
int count_frames; // frames output so far
double frame_duration; // 90KHz ticks per frame (for CFR/PFR)
double out_last_stop; // where last frame ended (for CFR/PFR)
int drops; // frames dropped (for CFR/PFR)
int dups; // frames duped (for CFR/PFR)
// Duplicate frame detection members
int frame_analysis_depth;
int64_t frame_analysis_duration;
hb_list_t * frame_rate_list;
double * frame_metric;
unsigned gamma_lut[256];
#if defined(HB_DEBUG_CFR_DROPS)
int64_t sequence;
#endif
};
static int hb_vfr_init( hb_filter_object_t * filter,
hb_filter_init_t * init );
static int hb_vfr_work( hb_filter_object_t * filter,
hb_buffer_t ** buf_in,
hb_buffer_t ** buf_out );
static void hb_vfr_close( hb_filter_object_t * filter );
static hb_filter_info_t * hb_vfr_info( hb_filter_object_t * filter );
static const char hb_vfr_template[] =
"mode=^([012])$:rate=^"HB_RATIONAL_REG"$";
hb_filter_object_t hb_filter_vfr =
{
.id = HB_FILTER_VFR,
.enforce_order = 1,
.name = "Framerate Shaper",
.settings = NULL,
.init = hb_vfr_init,
.work = hb_vfr_work,
.close = hb_vfr_close,
.info = hb_vfr_info,
.settings_template = hb_vfr_template,
};
// Create gamma lookup table.
// Note that we are creating a scaled integer lookup table that will
// not cause overflows in sse_block16() below. This results in
// small values being truncated to 0 which is ok for this usage.
static void build_gamma_lut( hb_filter_private_t * pv )
{
int i;
for( i = 0; i < 256; i++ )
{
pv->gamma_lut[i] = 4095 * pow( ( (float)i / (float)255 ), 2.2f );
}
}
#define DUP_THRESH_SSE 5.0
// Compute the sum of squared errors for a 16x16 block
// Gamma adjusts pixel values so that less visible differences
// count less.
static inline unsigned sse_block16( unsigned *gamma_lut, uint8_t *a, uint8_t *b, int stride )
{
int x, y;
unsigned sum = 0;
int diff;
for( y = 0; y < 16; y++ )
{
for( x = 0; x < 16; x++ )
{
diff = gamma_lut[a[x]] - gamma_lut[b[x]];
sum += diff * diff;
}
a += stride;
b += stride;
}
return sum;
}
// Sum of squared errors. Computes and sums the SSEs for all
// 16x16 blocks in the images. Only checks the Y component.
static float motion_metric( unsigned * gamma_lut, hb_buffer_t * a, hb_buffer_t * b )
{
int bw = a->f.width / 16;
int bh = a->f.height / 16;
int stride = a->plane[0].stride;
uint8_t * pa = a->plane[0].data;
uint8_t * pb = b->plane[0].data;
int x, y;
uint64_t sum = 0;
for( y = 0; y < bh; y++ )
{
for( x = 0; x < bw; x++ )
{
sum += sse_block16( gamma_lut, pa + y * 16 * stride + x * 16,
pb + y * 16 * stride + x * 16,
stride );
}
}
return (float)sum / ( a->f.width * a->f.height );;
}
static void delete_metric(double * metrics, int pos, int size)
{
double * dst = &metrics[pos];
double * src = &metrics[pos + 1];
int msize = (size - (pos + 1)) * sizeof(double);
memmove(dst, src, msize);
}
static int find_drop_frame(hb_filter_private_t * pv, int count)
{
int ii, min;
double * metrics = pv->frame_metric;
hb_buffer_t * buf, * first;
double cfr_stop;
// compute where the second to last frame in the frame_rate_list would
// stop if the frame rate were constant.
//
// this is our target stopping time for CFR and earliest possible
// stopping time for PFR.
cfr_stop = pv->out_last_stop + pv->frame_duration * (count - 1);
// If the last frame's stop timestamp is before the calculated
// CFR stop time of the second to last frame, then we need to drop a frame.
buf = hb_list_item(pv->frame_rate_list, count - 1);
// Shortcut exit when entire list is CFR OK
if (buf->s.stop >= (int64_t)cfr_stop)
{
return -1;
}
first = hb_list_item(pv->frame_rate_list, 0);
min = 0;
for (ii = 1; ii < count; ii++)
{
hb_buffer_t * buf = hb_list_item(pv->frame_rate_list, ii);
// Don't check buffers outside analysis window
if (buf->s.stop - first->s.start > pv->frame_analysis_duration)
{
break;
}
if (min < 0 || metrics[ii] < metrics[min])
{
min = ii;
}
}
cfr_stop = pv->out_last_stop + pv->frame_duration * (ii - 1);
buf = hb_list_item(pv->frame_rate_list, ii - 1);
// Don't drop buffers if frames fit in CRF time bounds
if (buf->s.stop >= (int64_t)cfr_stop)
{
return -1;
}
return min;
}
// This section of the code implements video frame rate control.
// Since filters are allowed to duplicate and drop frames (which
// changes the timing), this has to be the last thing done in render.
//
// There are three options, selected by the value of cfr:
// 0 - Variable Frame Rate (VFR) or 'same as source': frame times
// are left alone
// 1 - Constant Frame Rate (CFR): Frame timings are adjusted so that all
// frames are exactly vrate.den ticks apart. Frames are dropped
// or duplicated if necessary to maintain this spacing.
// 2 - Peak Frame Rate (PFR): vrate.den is treated as the peak
// average frame rate. I.e., the average frame rate (current frame
// end time divided by number of frames so far) is never allowed to be
// greater than vrate.den and frames are dropped if necessary
// to keep the average under this value. Other than those drops, frame
// times are left alone.
//
static hb_buffer_t * adjust_frame_rate( hb_filter_private_t * pv,
hb_buffer_t * in )
{
if (pv->cfr == 0)
{
++pv->count_frames;
pv->out_last_stop = in->s.stop;
return in;
}
int count;
// in == NULL signals we are flushing the frame_rate_list
if (in != NULL)
{
if (pv->out_last_stop == (int64_t)AV_NOPTS_VALUE)
{
pv->out_last_stop = in->s.start;
}
#if defined(HB_DEBUG_CFR_DROPS)
in->s.pcr = pv->sequence++;
#endif
hb_list_add(pv->frame_rate_list, in);
count = hb_list_count(pv->frame_rate_list);
if (count < 2)
{
return NULL;
}
hb_buffer_t * penultimate, * ultimate;
penultimate = hb_list_item(pv->frame_rate_list, count - 2);
ultimate = hb_list_item(pv->frame_rate_list, count - 1);
pv->frame_metric[count - 1] = motion_metric(pv->gamma_lut,
penultimate, ultimate);
if (count < pv->frame_analysis_depth)
{
return NULL;
}
}
else
{
count = hb_list_count(pv->frame_rate_list);
}
hb_buffer_list_t list;
hb_buffer_t * out;
double cfr_stop;
int drop_frame;
hb_buffer_list_clear(&list);
drop_frame = find_drop_frame(pv, count);
if (drop_frame >= 0)
{
// We may have to drop multiple frames. Pick frames to drop
// that appear to have minimum motion.
//
// The main use case we are trying to cover here is
// "progressive telecine" where there is a repeating pattern
// of a new frame followed by some number of repeated frames.
// We want to keep the "new frames" and drop the repeates.
out = hb_list_item(pv->frame_rate_list, drop_frame);
#if defined(HB_DEBUG_CFR_DROPS)
hb_log("CFR Drop: %ld metric %d", out->s.pcr, (int)pv->frame_metric[drop_frame]);
int jj;
for (jj = 0; jj < count; jj++)
{
if (jj == drop_frame)
{
fprintf(stderr, "(%4d) ", (int)pv->frame_metric[jj]);
}
else
{
fprintf(stderr, "%6d ", (int)pv->frame_metric[jj]);
}
}
fprintf(stderr, "\n");
#endif
hb_list_rem(pv->frame_rate_list, out);
hb_buffer_close(&out);
delete_metric(pv->frame_metric, drop_frame, count);
++pv->drops;
return NULL;
}
out = hb_list_item(pv->frame_rate_list, 0);
#if defined(HB_DEBUG_CFR_DROPS)
static int64_t lastpass = 0;
hb_log("CFR Pass: %ld ~ %ld metric %d", out->s.pcr, out->s.pcr - lastpass, (int)pv->frame_metric[0]);
lastpass = out->s.pcr;
#endif
hb_list_rem(pv->frame_rate_list, out);
hb_buffer_list_append(&list, out);
delete_metric(pv->frame_metric, 0, count);
// this frame has to start where the last one stopped.
out->s.start = pv->out_last_stop;
cfr_stop = pv->out_last_stop + pv->frame_duration;
// at this point we know that this frame doesn't push the average
// rate over the limit so we just pass it on for PFR. For CFR we're
// going to return it (with its start & stop times modified) and
// we may have to dup it.
++pv->count_frames;
if (pv->cfr > 1)
{
// PFR - we're going to keep the frame but may need to
// adjust it's stop time to meet the average rate constraint.
if (out->s.stop < cfr_stop)
{
out->s.stop = pv->out_last_stop = cfr_stop;
}
else
{
pv->out_last_stop = out->s.stop;
}
}
else
{
// we're doing CFR so we have to either trim some time from a
// buffer that ends too far in the future or, if the buffer is
// two or more frame times long, split it into multiple pieces,
// each of which is a frame time long.
double excess = (double)out->s.stop - cfr_stop;
out->s.stop = pv->out_last_stop = cfr_stop;
for (; excess >= pv->frame_duration; excess -= pv->frame_duration)
{
/* next frame too far ahead - dup current frame */
hb_buffer_t *dup = hb_buffer_dup( out );
dup->s.new_chap = 0;
dup->s.start = cfr_stop;
cfr_stop += pv->frame_duration;
dup->s.stop = pv->out_last_stop = cfr_stop;
hb_buffer_list_append(&list, dup);
++pv->dups;
++pv->count_frames;
}
}
return hb_buffer_list_clear(&list);
}
static hb_buffer_t * flush_frames(hb_filter_private_t * pv)
{
hb_buffer_list_t list;
hb_buffer_list_clear(&list);
while (hb_list_count(pv->frame_rate_list) > 0)
{
hb_buffer_list_append(&list, adjust_frame_rate(pv, NULL));
}
return hb_buffer_list_clear(&list);
}
static int hb_vfr_init(hb_filter_object_t *filter, hb_filter_init_t *init)
{
filter->private_data = calloc(1, sizeof(struct hb_filter_private_s));
hb_filter_private_t *pv = filter->private_data;
build_gamma_lut(pv);
pv->cfr = init->cfr;
pv->input_vrate = pv->vrate = init->vrate;
hb_dict_extract_int(&pv->cfr, filter->settings, "mode");
hb_dict_extract_rational(&pv->vrate, filter->settings, "rate");
// frame-drop analysis always looks at at least 2 buffers
pv->frame_analysis_depth = 2;
// Calculate the number of frames we need to keep in order to
// detect "best" candidate frames to drop.
double in_vrate = (double)pv->input_vrate.num / pv->input_vrate.den;
double out_vrate = (double)pv->vrate.num / pv->vrate.den;
if (in_vrate > out_vrate)
{
// in_vrate / out_vrate tells us how many consecutive repeated
// frames we can expect to see. if the number of consecutive
// repeated frame is < 2, we need the number of consecutive
// non-repeated frames. Then add 1 so that we should have
// transitions that we can detect at both ends of a sequence.
double factor = in_vrate / out_vrate;
if (factor > 1.0 && factor < 2.0)
{
factor = 1 / (factor - 1);
}
pv->frame_analysis_depth = ceil(factor) + 1;
// if we end up with an absurdly large value, limit it
if (pv->frame_analysis_depth > MAX_FRAME_ANALYSIS_DEPTH)
{
pv->frame_analysis_depth = MAX_FRAME_ANALYSIS_DEPTH;
}
}
pv->frame_analysis_duration = pv->frame_analysis_depth * 90000 / in_vrate;
pv->frame_metric = calloc(pv->frame_analysis_depth, sizeof(double));
pv->frame_metric[0] = INT_MAX;
pv->job = init->job;
/* Setup FIFO queue for subtitle cache */
pv->delay_queue = hb_fifo_init( 8, 1 );
pv->frame_rate_list = hb_list_init();
/* VFR IVTC needs a bunch of time-keeping variables to track
how many frames are dropped, how many are extended, what the
last 4 start and stop times were (so they can be modified),
how much time has been lost and gained overall, how much time
the latest 4 frames should be extended by */
pv->dropped_frames = 0;
pv->extended_frames = 0;
pv->last_start[0] = 0;
pv->last_stop[0] = 0;
pv->total_lost_time = 0;
pv->total_gained_time = 0;
pv->lost_time[0] = 0;
pv->lost_time[1] = 0;
pv->lost_time[2] = 0;
pv->lost_time[3] = 0;
if (pv->cfr == 2)
{
// For PFR, we want the framerate based on the source's actual
// framerate, unless it's higher than the specified peak framerate.
double source_fps = (double)init->vrate.num / init->vrate.den;
double peak_fps = (double)pv->vrate.num / pv->vrate.den;
if (source_fps > peak_fps)
{
// peak framerate is lower than the source framerate.
// so signal that the framerate will be the peak fps.
init->vrate = pv->vrate;
}
}
else
{
init->vrate = pv->vrate;
}
pv->frame_duration = (double)pv->vrate.den * 90000. / pv->vrate.num;
pv->out_last_stop = (int64_t)AV_NOPTS_VALUE;
init->cfr = pv->cfr;
return 0;
}
static hb_filter_info_t * hb_vfr_info( hb_filter_object_t * filter )
{
hb_filter_private_t * pv = filter->private_data;
hb_filter_info_t * info;
if( !pv )
return NULL;
info = calloc(1, sizeof(hb_filter_info_t));
info->human_readable_desc = malloc(128);
info->human_readable_desc[0] = 0;
info->output.vrate = pv->input_vrate;
if (pv->cfr == 2)
{
// For PFR, we want the framerate based on the source's actual
// framerate, unless it's higher than the specified peak framerate.
double source_fps = (double)pv->input_vrate.num / pv->input_vrate.den;
double peak_fps = (double)pv->vrate.num / pv->vrate.den;
if (source_fps > peak_fps)
{
// peak framerate is lower than the source framerate.
// so signal that the framerate will be the peak fps.
info->output.vrate = pv->vrate;
}
}
else
{
info->output.vrate = pv->vrate;
}
info->output.cfr = pv->cfr;
if ( pv->cfr == 0 )
{
/* Ensure we're using "Same as source" FPS */
snprintf( info->human_readable_desc, 128,
"frame rate: same as source (around %.3f fps)",
(float)pv->vrate.num / pv->vrate.den );
}
else if ( pv->cfr == 2 )
{
// For PFR, we want the framerate based on the source's actual
// framerate, unless it's higher than the specified peak framerate.
double source_fps = (double)pv->input_vrate.num / pv->input_vrate.den;
double peak_fps = (double)pv->vrate.num / pv->vrate.den;
snprintf( info->human_readable_desc, 128,
"frame rate: %.3f fps -> peak rate limited to %.3f fps",
source_fps , peak_fps );
}
else
{
// Constant framerate. Signal the framerate we are using.
double source_fps = (double)pv->input_vrate.num / pv->input_vrate.den;
double constant_fps = (double)pv->vrate.num / pv->vrate.den;
snprintf( info->human_readable_desc, 128,
"frame rate: %.3f fps -> constant %.3f fps",
source_fps , constant_fps );
}
return info;
}
static void hb_vfr_close( hb_filter_object_t * filter )
{
hb_filter_private_t * pv = filter->private_data;
if( !pv )
return;
if ( pv->cfr )
{
hb_log("vfr: %d frames output, %d dropped and %d duped for CFR/PFR",
pv->count_frames, pv->drops, pv->dups );
}
if( pv->job )
{
hb_interjob_t * interjob = hb_interjob_get( pv->job->h );
/* Preserve dropped frame count for more accurate
* framerates in 2nd passes.
*/
interjob->out_frame_count = pv->count_frames;
interjob->total_time = pv->out_last_stop;
}
hb_log("vfr: lost time: %"PRId64" (%i frames)",
pv->total_lost_time, pv->dropped_frames);
hb_log("vfr: gained time: %"PRId64" (%i frames) (%"PRId64" not accounted for)",
pv->total_gained_time, pv->extended_frames,
pv->total_lost_time - pv->total_gained_time);
if (pv->dropped_frames)
{
hb_log("vfr: average dropped frame duration: %"PRId64,
(pv->total_lost_time / pv->dropped_frames) );
}
if( pv->delay_queue )
{
hb_fifo_close( &pv->delay_queue );
}
free(pv->frame_metric);
hb_list_close(&pv->frame_rate_list);
/* Cleanup render work structure */
free( pv );
filter->private_data = NULL;
}
static int hb_vfr_work( hb_filter_object_t * filter,
hb_buffer_t ** buf_in,
hb_buffer_t ** buf_out )
{
hb_filter_private_t * pv = filter->private_data;
hb_buffer_t * in = *buf_in;
hb_buffer_t * out = NULL;
*buf_in = NULL;
*buf_out = NULL;
if (in->s.flags & HB_BUF_FLAG_EOF)
{
hb_buffer_list_t list;
hb_buffer_t * next;
int counter = 2;
// Flush the delay_queue and frame rate adjustment
hb_buffer_list_clear(&list);
while ((next = hb_fifo_get(pv->delay_queue)) != NULL)
{
/* We can't use the given time stamps. Previous frames
might already have been extended, throwing off the
raw values fed to render.c. Instead, their
stop and start times are stored in arrays.
The 4th cached frame will be the to use.
If it needed its duration extended to make up
lost time, it will have happened above. */
next->s.start = pv->last_start[counter];
next->s.stop = pv->last_stop[counter--];
hb_buffer_list_append(&list, adjust_frame_rate(pv, next));
}
hb_buffer_list_append(&list, flush_frames(pv));
hb_buffer_list_append(&list, in);
*buf_out = hb_buffer_list_clear(&list);
return HB_FILTER_DONE;
}
// If there is a gap between the last stop and the current start
// then frame(s) were dropped.
if (hb_fifo_size(pv->delay_queue) > 0 && in->s.start > pv->last_stop[0])
{
/* We need to compensate for the time lost by dropping frame(s).
Spread its duration out in quarters, because usually dropped frames
maintain a 1-out-of-5 pattern and this spreads it out amongst
the remaining ones. Store these in the lost_time array, which
has 4 slots in it. Because not every frame duration divides
evenly by 4, and we can't lose the remainder, we have to go
through an awkward process to preserve it in the 4th array index.
*/
int64_t temp_duration = in->s.start - pv->last_stop[0];
pv->lost_time[0] += (temp_duration / 4);
pv->lost_time[1] += (temp_duration / 4);
pv->lost_time[2] += (temp_duration / 4);
pv->lost_time[3] += ( temp_duration - 3 * (temp_duration / 4) );
pv->total_lost_time += temp_duration;
}
else if ( in->s.stop <= pv->last_stop[0] )
{
// This is generally an error somewhere (bad source or hb bug).
// But lets do our best to straighten out the mess.
++pv->drops;
hb_buffer_close(&in);
return HB_FILTER_OK;
}
/* Cache frame start and stop times, so we can renumber
time stamps if dropping frames for VFR. */
int i;
for( i = 3; i >= 1; i-- )
{
pv->last_start[i] = pv->last_start[i-1];
pv->last_stop[i] = pv->last_stop[i-1];
}
/* In order to make sure we have continuous time stamps, store
the current frame's duration as starting when the last one stopped. */
if (hb_fifo_size(pv->delay_queue) == 0)
{
pv->last_start[0] = in->s.start;
pv->last_stop[0] = in->s.stop;
}
else
{
pv->last_start[0] = pv->last_stop[1];
pv->last_stop[0] = pv->last_start[0] + (in->s.stop - in->s.start);
}
hb_fifo_push( pv->delay_queue, in );
/*
* Keep the last three frames in our queue, this ensures that we have
* the last two always in there should we need to rewrite the
* durations on them.
*/
if (hb_fifo_size(pv->delay_queue) < 4)
{
*buf_out = NULL;
return HB_FILTER_OK;
}
out = hb_fifo_get(pv->delay_queue);
/* The current frame exists. That means it hasn't been dropped by a
* filter. We may edit its duration if needed.
*/
if( pv->lost_time[3] > 0 )
{
int time_shift = 0;
for( i = 3; i >= 0; i-- )
{
/*
* A frame's been dropped earlier by VFR detelecine.
* Gotta make up the lost time. This will also
* slow down the video.
* The dropped frame's has to be accounted for, so
* divvy it up amongst the 4 frames left behind.
* This is what the delay_queue is for;
* telecined sequences start 2 frames before
* the dropped frame, so to slow down the right
* ones you need a 2 frame delay between
* reading input and writing output.
*/
/* We want to extend the outputted frame's duration by the value
stored in the 4th slot of the lost_time array. Because we need
to adjust all the values in the array so they're contiguous,
extend the duration inside the array first, before applying
it to the current frame buffer. */
pv->last_start[i] += time_shift;
pv->last_stop[i] += pv->lost_time[i] + time_shift;
/* Log how much time has been added back in to the video. */
pv->total_gained_time += pv->lost_time[i];
time_shift += pv->lost_time[i];
pv->lost_time[i] = 0;
/* Log how many frames have had their durations extended. */
pv->extended_frames++;
}
}
/* We can't use the given time stamps. Previous frames
might already have been extended, throwing off the
raw values fed to render.c. Instead, their
stop and start times are stored in arrays.
The 4th cached frame will be the to use.
If it needed its duration extended to make up
lost time, it will have happened above. */
out->s.start = pv->last_start[3];
out->s.stop = pv->last_stop[3];
*buf_out = adjust_frame_rate(pv, out);
return HB_FILTER_OK;
}
|