1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
|
#include "hb.h"
#include "hbffmpeg.h"
//#include "mpeg2dec/mpeg2.h"
#define MODE_DEFAULT 3
// Mode 1: Flip vertically (y0 becomes yN and yN becomes y0)
// Mode 2: Flip horizontally (x0 becomes xN and xN becomes x0)
// Mode 3: Flip both horizontally and vertically (modes 1 and 2 combined)
typedef struct rotate_arguments_s {
hb_buffer_t *dst;
hb_buffer_t *src;
int stop;
} rotate_arguments_t;
struct hb_filter_private_s
{
int mode;
int width;
int height;
int par_width;
int par_height;
int cpu_count;
hb_thread_t ** rotate_threads; // Threads for Rotate - one per CPU
hb_lock_t ** rotate_begin_lock; // Thread has work
hb_lock_t ** rotate_complete_lock; // Thread has completed work
rotate_arguments_t *rotate_arguments; // Arguments to thread for work
};
static int hb_rotate_init( hb_filter_object_t * filter,
hb_filter_init_t * init );
static int hb_rotate_work( hb_filter_object_t * filter,
hb_buffer_t ** buf_in,
hb_buffer_t ** buf_out );
static void hb_rotate_close( hb_filter_object_t * filter );
static int hb_rotate_info( hb_filter_object_t * filter,
hb_filter_info_t * info );
hb_filter_object_t hb_filter_rotate =
{
.id = HB_FILTER_ROTATE,
.enforce_order = 0,
.init_index = 2,
.name = "Rotate (rotate & flip image axes)",
.settings = NULL,
.init = hb_rotate_init,
.work = hb_rotate_work,
.close = hb_rotate_close,
.info = hb_rotate_info
};
typedef struct rotate_thread_arg_s {
hb_filter_private_t *pv;
int segment;
} rotate_thread_arg_t;
/*
* rotate this segment of all three planes in a single thread.
*/
void rotate_filter_thread( void *thread_args_v )
{
rotate_arguments_t *rotate_work = NULL;
hb_filter_private_t * pv;
int run = 1;
int plane;
int segment, segment_start, segment_stop;
rotate_thread_arg_t *thread_args = thread_args_v;
uint8_t *dst;
hb_buffer_t *dst_buf;
hb_buffer_t *src_buf;
int y;
pv = thread_args->pv;
segment = thread_args->segment;
hb_log("Rotate thread started for segment %d", segment);
while( run )
{
/*
* Wait here until there is work to do. hb_lock() blocks until
* render releases it to say that there is more work to do.
*/
hb_lock( pv->rotate_begin_lock[segment] );
rotate_work = &pv->rotate_arguments[segment];
if( rotate_work->stop )
{
/*
* No more work to do, exit this thread.
*/
run = 0;
continue;
}
if( rotate_work->dst == NULL )
{
hb_error( "Thread started when no work available" );
hb_snooze(500);
continue;
}
/*
* Process all three planes, but only this segment of it.
*/
dst_buf = rotate_work->dst;
src_buf = rotate_work->src;
for( plane = 0; plane < 3; plane++)
{
int dst_stride, src_stride;
dst = dst_buf->plane[plane].data;
dst_stride = dst_buf->plane[plane].stride;
src_stride = src_buf->plane[plane].stride;
int h = src_buf->plane[plane].height;
int w = src_buf->plane[plane].width;
segment_start = ( h / pv->cpu_count ) * segment;
if( segment == pv->cpu_count - 1 )
{
/*
* Final segment
*/
segment_stop = h;
} else {
segment_stop = ( h / pv->cpu_count ) * ( segment + 1 );
}
for( y = segment_start; y < segment_stop; y++ )
{
uint8_t * cur;
int x, xo, yo;
cur = &src_buf->plane[plane].data[y * src_stride];
for( x = 0; x < w; x++)
{
if( pv->mode & 1 )
{
yo = h - y - 1;
}
else
{
yo = y;
}
if( pv->mode & 2 )
{
xo = w - x - 1;
}
else
{
xo = x;
}
if( pv->mode & 4 ) // Rotate 90 clockwise
{
int tmp = xo;
xo = h - yo - 1;
yo = tmp;
}
dst[yo*dst_stride + xo] = cur[x];
}
}
}
/*
* Finished this segment, let everyone know.
*/
hb_unlock( pv->rotate_complete_lock[segment] );
}
free( thread_args_v );
}
/*
* threaded rotate - each thread rotates a single segment of all
* three planes. Where a segment is defined as the frame divided by
* the number of CPUs.
*
* This function blocks until the frame is rotated.
*/
static void rotate_filter(
hb_filter_private_t * pv,
hb_buffer_t *out,
hb_buffer_t *in )
{
int segment;
for( segment = 0; segment < pv->cpu_count; segment++ )
{
/*
* Setup the work for this plane.
*/
pv->rotate_arguments[segment].dst = out;
pv->rotate_arguments[segment].src = in;
/*
* Let the thread for this plane know that we've setup work
* for it by releasing the begin lock (ensuring that the
* complete lock is already locked so that we block when
* we try to lock it again below).
*/
hb_lock( pv->rotate_complete_lock[segment] );
hb_unlock( pv->rotate_begin_lock[segment] );
}
/*
* Wait until all three threads have completed by trying to get
* the complete lock that we locked earlier for each thread, which
* will block until that thread has completed the work on that
* plane.
*/
for( segment = 0; segment < pv->cpu_count; segment++ )
{
hb_lock( pv->rotate_complete_lock[segment] );
hb_unlock( pv->rotate_complete_lock[segment] );
}
/*
* Entire frame is now rotated.
*/
}
static int hb_rotate_init( hb_filter_object_t * filter,
hb_filter_init_t * init )
{
filter->private_data = calloc( 1, sizeof(struct hb_filter_private_s) );
hb_filter_private_t * pv = filter->private_data;
pv->mode = MODE_DEFAULT;
if( filter->settings )
{
sscanf( filter->settings, "%d",
&pv->mode );
}
pv->cpu_count = hb_get_cpu_count();
/*
* Create threads and locks.
*/
pv->rotate_threads = malloc( sizeof( hb_thread_t* ) * pv->cpu_count );
pv->rotate_begin_lock = malloc( sizeof( hb_lock_t * ) * pv->cpu_count );
pv->rotate_complete_lock = malloc( sizeof( hb_lock_t * ) * pv->cpu_count );
pv->rotate_arguments = malloc( sizeof( rotate_arguments_t ) * pv->cpu_count );
int i;
for( i = 0; i < pv->cpu_count; i++ )
{
rotate_thread_arg_t *thread_args;
thread_args = malloc( sizeof( rotate_thread_arg_t ) );
if( thread_args ) {
thread_args->pv = pv;
thread_args->segment = i;
pv->rotate_begin_lock[i] = hb_lock_init();
pv->rotate_complete_lock[i] = hb_lock_init();
/*
* Important to start off with the threads locked waiting
* on input.
*/
hb_lock( pv->rotate_begin_lock[i] );
pv->rotate_arguments[i].stop = 0;
pv->rotate_arguments[i].dst = NULL;
pv->rotate_threads[i] = hb_thread_init( "rotate_filter_segment",
rotate_filter_thread,
thread_args,
HB_NORMAL_PRIORITY );
} else {
hb_error( "rotate could not create threads" );
}
}
// Set init width/height so the next stage in the pipline
// knows what it will be getting
if( pv->mode & 4 )
{
// 90 degree rotation, exchange width and height
int tmp = init->width;
init->width = init->height;
init->height = tmp;
tmp = init->par_width;
init->par_width = init->par_height;
init->par_height = tmp;
}
pv->width = init->width;
pv->height = init->height;
pv->par_width = init->par_width;
pv->par_height = init->par_height;
return 0;
}
static int hb_rotate_info( hb_filter_object_t * filter,
hb_filter_info_t * info )
{
hb_filter_private_t * pv = filter->private_data;
if( !pv )
return 1;
memset( info, 0, sizeof( hb_filter_info_t ) );
info->out.width = pv->width;
info->out.height = pv->height;
info->out.par_width = pv->par_width;
info->out.par_height = pv->par_height;
int pos = 0;
if( pv->mode & 1 )
pos += sprintf( &info->human_readable_desc[pos], "flip vertical" );
if( pv->mode & 2 )
{
if( pos )
pos += sprintf( &info->human_readable_desc[pos], "/" );
pos += sprintf( &info->human_readable_desc[pos], "flip horizontal" );
}
if( pv->mode & 4 )
{
if( pos )
pos += sprintf( &info->human_readable_desc[pos], "/" );
pos += sprintf( &info->human_readable_desc[pos], "rotate 90" );
}
return 0;
}
static void hb_rotate_close( hb_filter_object_t * filter )
{
hb_filter_private_t * pv = filter->private_data;
if( !pv )
{
return;
}
int i;
for( i = 0; i < pv->cpu_count; i++)
{
/*
* Tell each rotate thread to stop, and then cleanup.
*/
pv->rotate_arguments[i].stop = 1;
hb_unlock( pv->rotate_begin_lock[i] );
hb_thread_close( &pv->rotate_threads[i] );
hb_lock_close( &pv->rotate_begin_lock[i] );
hb_lock_close( &pv->rotate_complete_lock[i] );
}
/*
* free memory for rotate structs
*/
free( pv->rotate_threads );
free( pv->rotate_begin_lock );
free( pv->rotate_complete_lock );
free( pv->rotate_arguments );
free( pv );
filter->private_data = NULL;
}
static int hb_rotate_work( hb_filter_object_t * filter,
hb_buffer_t ** buf_in,
hb_buffer_t ** buf_out )
{
hb_filter_private_t * pv = filter->private_data;
hb_buffer_t * in = *buf_in, * out;
if ( in->size <= 0 )
{
*buf_out = in;
*buf_in = NULL;
return HB_FILTER_DONE;
}
int width_out, height_out;
if ( pv->mode & 4 )
{
width_out = in->f.height;
height_out = in->f.width;
}
else
{
width_out = in->f.width;
height_out = in->f.height;
}
out = hb_video_buffer_init( width_out, height_out );
// Rotate!
rotate_filter( pv, out, in );
out->s = in->s;
hb_buffer_move_subs( out, in );
*buf_out = out;
return HB_FILTER_OK;
}
|