summaryrefslogtreecommitdiffstats
path: root/libhb/nlmeans_x86.c
blob: 685ac857e606770e4b06a497bd825010150ceeb0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/* nlmeans_x86.c

   Copyright (c) 2013 Dirk Farin
   Copyright (c) 2003-2015 HandBrake Team
   This file is part of the HandBrake source code
   Homepage: <http://handbrake.fr/>.
   It may be used under the terms of the GNU General Public License v2.
   For full terms see the file COPYING file or visit http://www.gnu.org/licenses/gpl-2.0.html
 */

#include <emmintrin.h>

#include "hb.h"
#include "libavutil/cpu.h"
#include "nlmeans.h"

static void build_integral_sse2(uint32_t *integral,
                                int       integral_stride,
                          const uint8_t  *src,
                          const uint8_t  *src_pre,
                                int       src_w,
                          const uint8_t  *compare,
                          const uint8_t  *compare_pre,
                                int       compare_w,
                                int       w,
                                int       h,
                                int       dx,
                                int       dy)
{
    const __m128i zero = _mm_set1_epi8(0);

    for (int y = 0; y < h; y++)
    {
        __m128i prevadd = _mm_set1_epi32(0);

        const uint8_t *p1 = src_pre + y*src_w;
        const uint8_t *p2 = compare_pre + (y+dy)*compare_w + dx;
        uint32_t *out = integral + (y*integral_stride);

        for (int x = 0; x < w; x += 16)
        {
            __m128i pa, pb;
            __m128i pla, plb;
            __m128i ldiff, lldiff, lhdiff;
            __m128i ltmp,htmp;
            __m128i ladd,hadd;
            __m128i pha,phb;
            __m128i hdiff,hldiff,hhdiff;
            __m128i l2tmp,h2tmp;

            pa = _mm_loadu_si128((__m128i*)p1);      // Load source  pixels into register 1
            pb = _mm_loadu_si128((__m128i*)p2);      // Load compare pixels into register 2

            // Low
            pla = _mm_unpacklo_epi8(pa,zero);        // Unpack and interleave source  low with zeros
            plb = _mm_unpacklo_epi8(pb,zero);        // Unpack and interleave compare low with zeros

            ldiff = _mm_sub_epi16(pla,plb);          // Diff source and compare lows (subtract)
            ldiff = _mm_mullo_epi16(ldiff,ldiff);    // Square low diff (multiply at 32-bit precision)

            lldiff = _mm_unpacklo_epi16(ldiff,zero); // Unpack and interleave diff low  with zeros
            lhdiff = _mm_unpackhi_epi16(ldiff,zero); // Unpack and interleave diff high with zeros

            ltmp = _mm_slli_si128(lldiff, 4);        // Temp shift diff low left 4 bytes
            lldiff = _mm_add_epi32(lldiff, ltmp);    // Add above to diff low
            ltmp = _mm_slli_si128(lldiff, 8);        // Temp shift diff low left 8 bytes
            lldiff = _mm_add_epi32(lldiff, ltmp);    // Add above to diff low
            lldiff = _mm_add_epi32(lldiff, prevadd); // Add previous total to diff low

            ladd = _mm_shuffle_epi32(lldiff, 0xff);  // Shuffle diff low

            htmp = _mm_slli_si128(lhdiff, 4);        // Temp shift diff high left 4 bytes
            lhdiff = _mm_add_epi32(lhdiff, htmp);    // Add above to diff high
            htmp = _mm_slli_si128(lhdiff, 8);        // Temp shift diff high left 8 bytes
            lhdiff = _mm_add_epi32(lhdiff, htmp);    // Add above to diff high
            lhdiff = _mm_add_epi32(lhdiff, ladd);    // Add shuffled diff low to diff high

            prevadd = _mm_shuffle_epi32(lhdiff, 0xff); // Shuffle diff high

            // High
            pha = _mm_unpackhi_epi8(pa,zero);        // Unpack and interleave source  high with zeros
            phb = _mm_unpackhi_epi8(pb,zero);        // Unpack and interleave compare high with zeros

            hdiff = _mm_sub_epi16(pha,phb);          // Diff source and compare highs (subtract)
            hdiff = _mm_mullo_epi16(hdiff,hdiff);    // Square high diff (multiply at 32-bit precision)

            hldiff = _mm_unpacklo_epi16(hdiff,zero); // Unpack and interleave diff low  with zeros
            hhdiff = _mm_unpackhi_epi16(hdiff,zero); // Unpack and interleave diff high with zeros

            l2tmp = _mm_slli_si128(hldiff, 4);       // Temp shift diff low 4 bytes
            hldiff = _mm_add_epi32(hldiff, l2tmp);   // Add above to diff low
            l2tmp = _mm_slli_si128(hldiff, 8);       // Temp shift diff low left 8 bytes
            hldiff = _mm_add_epi32(hldiff, l2tmp);   // Add above to diff low
            hldiff = _mm_add_epi32(hldiff, prevadd); // Add previous total to diff low

            hadd = _mm_shuffle_epi32(hldiff, 0xff);  // Shuffle diff low

            h2tmp = _mm_slli_si128(hhdiff, 4);       // Temp shift diff high left 4 bytes
            hhdiff = _mm_add_epi32(hhdiff, h2tmp);   // Add above to diff high
            h2tmp = _mm_slli_si128(hhdiff, 8);       // Temp shift diff high left 8 bytes
            hhdiff = _mm_add_epi32(hhdiff, h2tmp);   // Add above to diff high
            hhdiff = _mm_add_epi32(hhdiff, hadd);    // Add shuffled diff low to diff high

            prevadd = _mm_shuffle_epi32(hhdiff, 0xff); // Shuffle diff high

            // Store
            _mm_store_si128((__m128i*)(out),    lldiff); // Store low  diff low  in memory
            _mm_store_si128((__m128i*)(out+4),  lhdiff); // Store low  diff high in memory
            _mm_store_si128((__m128i*)(out+8),  hldiff); // Store high diff low  in memory
            _mm_store_si128((__m128i*)(out+12), hhdiff); // Store high diff high in memory

            // Increment
            out += 16;
            p1  += 16;
            p2  += 16;
        }

        if (y > 0)
        {
            out = integral + y*integral_stride;

            for (int x = 0; x < w; x += 16)
            {
                *((__m128i*)out) = _mm_add_epi32(*(__m128i*)(out-integral_stride),
                                                 *(__m128i*)(out));

                *((__m128i*)(out+4)) = _mm_add_epi32(*(__m128i*)(out+4-integral_stride),
                                                     *(__m128i*)(out+4));

                *((__m128i*)(out+8)) = _mm_add_epi32(*(__m128i*)(out+8-integral_stride),
                                                     *(__m128i*)(out+8));

                *((__m128i*)(out+12)) = _mm_add_epi32(*(__m128i*)(out+12-integral_stride),
                                                      *(__m128i*)(out+12));

                out += 16;
            }
        }
    }
}

void nlmeans_init_x86(NLMeansFunctions *functions)
{
    if (av_get_cpu_flags() & AV_CPU_FLAG_SSE2)
    {
        functions->build_integral = build_integral_sse2;
        hb_log("NLMeans using SSE2 optimizations");
    }
}