summaryrefslogtreecommitdiffstats
path: root/libhb/nlmeans.c
blob: 17c78cb8e26c29d2a6db43d66a8920c9fb44c87a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
/* nlmeans.c

   Copyright (c) 2013-2016 Dirk Farin
   Copyright (c) 2003-2016 HandBrake Team
   This file is part of the HandBrake source code
   Homepage: <http://handbrake.fr/>.
   It may be used under the terms of the GNU General Public License v2.
   For full terms see the file COPYING file or visit http://www.gnu.org/licenses/gpl-2.0.html
 */

/* Usage
 *
 * Parameters:
 *     lumaY_strength   : lumaY_origin_tune   : lumaY_patch_size   : lumaY_range   : lumaY_frames   : lumaY_prefilter   :
 *     chromaB_strength : chromaB_origin_tune : chromaB_patch_size : chromaB_range : chromaB_frames : chromaB_prefilter :
 *     chromaR_strength : chromaR_origin_tune : chromaR_patch_size : chromaR_range : chromaR_frames : chromaR_prefilter
 *
 * Defaults:
 *     8:1:7:3:2:0 for each channel (equivalent to 8:1:7:3:2:0:8:1:7:3:2:0:8:1:7:3:2:0)
 *
 * Parameters cascade, e.g. 6:0.8:7:3:3:0:4:1 sets:
 *     strength 6, origin tune 0.8 for luma
 *     patch size 7, range 3, frames 3, prefilter 0 for all channels
 *     strength 4, origin tune 1 for both chroma channels
 *
 * Strength is relative and must be adjusted; ALL parameters affect overall strength.
 * Lower origin tune improves results for noisier input or animation (film 0.5-1, animation 0.15-0.5).
 * Large patch size (>9) may greatly reduce quality by clobbering detail.
 * Larger search range increases quality; however, computation time increases exponentially.
 * Large number of frames (film >3, animation >6) may cause temporal smearing.
 * Prefiltering can potentially improve weight decisions, yielding better results for difficult sources.
 *
 * Prefilter enum combos:
 *     1: Mean 3x3
 *     2: Mean 5x5
 *     3: Mean 5x5 (overrides Mean 3x3)
 *   257: Mean 3x3 reduced by 25%
 *   258: Mean 5x5 reduced by 25%
 *   513: Mean 3x3 reduced by 50%
 *   514: Mean 5x5 reduced by 50%
 *   769: Mean 3x3 reduced by 75%
 *   770: Mean 5x5 reduced by 75%
 *  1025: Mean 3x3 plus edge boost (restores lost edge detail)
 *  1026: Mean 5x5 plus edge boost
 *  1281: Mean 3x3 reduced by 25% plus edge boost
 *        etc...
 *  2049: Mean 3x3 passthru (NL-means off, prefilter is the output)
 *        etc...
 *  3329: Mean 3x3 reduced by 25% plus edge boost, passthru
 *        etc...
 */

#include "hb.h"
#include "hbffmpeg.h"
#include "taskset.h"

#define NLMEANS_STRENGTH_LUMA_DEFAULT      8
#define NLMEANS_STRENGTH_CHROMA_DEFAULT    8
#define NLMEANS_ORIGIN_TUNE_LUMA_DEFAULT   1
#define NLMEANS_ORIGIN_TUNE_CHROMA_DEFAULT 1
#define NLMEANS_PATCH_SIZE_LUMA_DEFAULT    7
#define NLMEANS_PATCH_SIZE_CHROMA_DEFAULT  7
#define NLMEANS_RANGE_LUMA_DEFAULT         3
#define NLMEANS_RANGE_CHROMA_DEFAULT       3
#define NLMEANS_FRAMES_LUMA_DEFAULT        2
#define NLMEANS_FRAMES_CHROMA_DEFAULT      2
#define NLMEANS_PREFILTER_LUMA_DEFAULT     0
#define NLMEANS_PREFILTER_CHROMA_DEFAULT   0

#define NLMEANS_PREFILTER_MODE_MEAN3X3       1
#define NLMEANS_PREFILTER_MODE_MEAN5X5       2
#define NLMEANS_PREFILTER_MODE_MEDIAN3X3     4
#define NLMEANS_PREFILTER_MODE_MEDIAN5X5     8
#define NLMEANS_PREFILTER_MODE_RESERVED16   16 // Reserved
#define NLMEANS_PREFILTER_MODE_RESERVED32   32 // Reserved
#define NLMEANS_PREFILTER_MODE_RESERVED64   64 // Reserved
#define NLMEANS_PREFILTER_MODE_RESERVED128 128 // Reserved
#define NLMEANS_PREFILTER_MODE_REDUCE25    256
#define NLMEANS_PREFILTER_MODE_REDUCE50    512
#define NLMEANS_PREFILTER_MODE_EDGEBOOST  1024
#define NLMEANS_PREFILTER_MODE_PASSTHRU   2048

#define NLMEANS_SORT(a,b) { if (a > b) NLMEANS_SWAP(a, b); }
#define NLMEANS_SWAP(a,b) { a = (a ^ b); b = (a ^ b); a = (b ^ a); }

#define NLMEANS_FRAMES_MAX  32
#define NLMEANS_EXPSIZE     128

typedef struct
{
    uint8_t *mem;
    uint8_t *mem_pre;
    uint8_t *image;
    uint8_t *image_pre;
    int w;
    int h;
    int border;
    hb_lock_t *mutex;
    int prefiltered;
} BorderedPlane;

typedef struct
{
    int width;
    int height;
    int fmt;
    BorderedPlane plane[3];
    hb_buffer_settings_t s;
} Frame;

struct PixelSum
{
    float weight_sum;
    float pixel_sum;
};

typedef struct
{
    hb_filter_private_t *pv;
    int segment;
    hb_buffer_t *out;
} nlmeans_thread_arg_t;

struct hb_filter_private_s
{
    double strength[3];    // averaging weight decay, larger produces smoother output
    double origin_tune[3]; // weight tuning for origin patch, 0.00..1.00
    int    patch_size[3];  // pixel context region width  (must be odd)
    int    range[3];       // spatial search window width (must be odd)
    int    nframes[3];     // temporal search depth in frames
    int    prefilter[3];   // prefilter mode, can improve weight analysis

    Frame      *frame;
    int         next_frame;
    int         max_frames;

    taskset_t   taskset;
    int         thread_count;
    nlmeans_thread_arg_t **thread_data;
};

static int nlmeans_init(hb_filter_object_t *filter, hb_filter_init_t *init);
static int nlmeans_work(hb_filter_object_t *filter,
                           hb_buffer_t **buf_in,
                           hb_buffer_t **buf_out);
static void nlmeans_close(hb_filter_object_t *filter);

static void nlmeans_filter_thread(void *thread_args_v);

hb_filter_object_t hb_filter_nlmeans =
{
    .id            = HB_FILTER_NLMEANS,
    .enforce_order = 1,
    .name          = "Denoise (nlmeans)",
    .settings      = NULL,
    .init          = nlmeans_init,
    .work          = nlmeans_work,
    .close         = nlmeans_close,
};

static void nlmeans_border(uint8_t *src,
                           int w,
                           int h,
                           int border)
{
    int bw = w + 2 * border;
    uint8_t *image = src + border + bw * border;

    // Create faux borders using edge pixels
    for (int y = 0; y < h; y++)
    {
        for (int x = 0; x < border; x++)
        {
            *(image + y*bw - x - 1) = *(image + y*bw + x);
            *(image + y*bw + x + w) = *(image + y*bw - x + (w-1));
        }
    }
    for (int y = 0; y < border; y++)
    {
        memcpy(image - border - (y+1)*bw, image - border +       y*bw, bw);
        memcpy(image - border + (y+h)*bw, image - border + (h-y-1)*bw, bw);
    }

}

static void nlmeans_deborder(BorderedPlane *src,
                             uint8_t *dst,
                             int w,
                             int s,
                             int h)
{
    int bw = src->w + 2 * src->border;
    uint8_t *image = src->mem + src->border + bw * src->border;
    int width = w;
    if (src->w < width)
        width = src->w;

    // Copy main image
    for (int y = 0; y < h; y++)
    {
        memcpy(dst + y * s, image + y * bw, width);
    }

}

static void nlmeans_alloc(uint8_t *src,
                          int src_w,
                          int src_s,
                          int src_h,
                          BorderedPlane *dst,
                          int border)
{
    int bw = src_w + 2 * border;
    int bh = src_h + 2 * border;

    uint8_t *mem   = malloc(bw * bh * sizeof(uint8_t));
    uint8_t *image = mem + border + bw * border;

    // Copy main image
    for (int y = 0; y < src_h; y++)
    {
        memcpy(image + y * bw, src + y * src_s, src_w);
    }

    dst->mem       = mem;
    dst->image     = image;
    dst->w         = src_w;
    dst->h         = src_h;
    dst->border    = border;

    nlmeans_border(dst->mem, dst->w, dst->h, dst->border);
    dst->mem_pre   = dst->mem;
    dst->image_pre = dst->image;

}

static void nlmeans_filter_mean(uint8_t *src,
                                uint8_t *dst,
                                int w,
                                int h,
                                int border,
                                int size)
{

    // Mean filter
    int bw = w + 2 * border;
    int offset_min = -((size - 1) /2);
    int offset_max =   (size + 1) /2;
    uint16_t pixel_sum;
    double pixel_weight = 1.0 / (size * size);
    for (int y = 0; y < h; y++)
    {
        for (int x = 0; x < w; x++)
        {
            pixel_sum = 0;
            for (int k = offset_min; k < offset_max; k++)
            {
                for (int j = offset_min; j < offset_max; j++)
                {
                    pixel_sum = pixel_sum + *(src + bw*(y+j) + (x+k));
                }
            }
            *(dst + bw*y + x) = (uint8_t)(pixel_sum * pixel_weight);
        }
    }

}

static uint8_t nlmeans_filter_median_opt(uint8_t *pixels, int size)
{

    // Optimized sorting networks
    if (size == 3)
    {
        /* opt_med9() via Nicolas Devillard
         * http://ndevilla.free.fr/median/median.pdf
         */
        NLMEANS_SORT(pixels[1], pixels[2]); NLMEANS_SORT(pixels[4], pixels[5]); NLMEANS_SORT(pixels[7], pixels[8]);
        NLMEANS_SORT(pixels[0], pixels[1]); NLMEANS_SORT(pixels[3], pixels[4]); NLMEANS_SORT(pixels[6], pixels[7]);
        NLMEANS_SORT(pixels[1], pixels[2]); NLMEANS_SORT(pixels[4], pixels[5]); NLMEANS_SORT(pixels[7], pixels[8]);
        NLMEANS_SORT(pixels[0], pixels[3]); NLMEANS_SORT(pixels[5], pixels[8]); NLMEANS_SORT(pixels[4], pixels[7]);
        NLMEANS_SORT(pixels[3], pixels[6]); NLMEANS_SORT(pixels[1], pixels[4]); NLMEANS_SORT(pixels[2], pixels[5]);
        NLMEANS_SORT(pixels[4], pixels[7]); NLMEANS_SORT(pixels[4], pixels[2]); NLMEANS_SORT(pixels[6], pixels[4]);
        NLMEANS_SORT(pixels[4], pixels[2]);
        return pixels[4];
    }
    else if (size == 5)
    {
        /* opt_med25() via Nicolas Devillard
         * http://ndevilla.free.fr/median/median.pdf
         */
        NLMEANS_SORT(pixels[0],  pixels[1]);  NLMEANS_SORT(pixels[3],  pixels[4]);  NLMEANS_SORT(pixels[2],  pixels[4]);
        NLMEANS_SORT(pixels[2],  pixels[3]);  NLMEANS_SORT(pixels[6],  pixels[7]);  NLMEANS_SORT(pixels[5],  pixels[7]);
        NLMEANS_SORT(pixels[5],  pixels[6]);  NLMEANS_SORT(pixels[9],  pixels[10]); NLMEANS_SORT(pixels[8],  pixels[10]);
        NLMEANS_SORT(pixels[8],  pixels[9]);  NLMEANS_SORT(pixels[12], pixels[13]); NLMEANS_SORT(pixels[11], pixels[13]);
        NLMEANS_SORT(pixels[11], pixels[12]); NLMEANS_SORT(pixels[15], pixels[16]); NLMEANS_SORT(pixels[14], pixels[16]);
        NLMEANS_SORT(pixels[14], pixels[15]); NLMEANS_SORT(pixels[18], pixels[19]); NLMEANS_SORT(pixels[17], pixels[19]);
        NLMEANS_SORT(pixels[17], pixels[18]); NLMEANS_SORT(pixels[21], pixels[22]); NLMEANS_SORT(pixels[20], pixels[22]);
        NLMEANS_SORT(pixels[20], pixels[21]); NLMEANS_SORT(pixels[23], pixels[24]); NLMEANS_SORT(pixels[2],  pixels[5]);
        NLMEANS_SORT(pixels[3],  pixels[6]);  NLMEANS_SORT(pixels[0],  pixels[6]);  NLMEANS_SORT(pixels[0],  pixels[3]);
        NLMEANS_SORT(pixels[4],  pixels[7]);  NLMEANS_SORT(pixels[1],  pixels[7]);  NLMEANS_SORT(pixels[1],  pixels[4]);
        NLMEANS_SORT(pixels[11], pixels[14]); NLMEANS_SORT(pixels[8],  pixels[14]); NLMEANS_SORT(pixels[8],  pixels[11]);
        NLMEANS_SORT(pixels[12], pixels[15]); NLMEANS_SORT(pixels[9],  pixels[15]); NLMEANS_SORT(pixels[9],  pixels[12]);
        NLMEANS_SORT(pixels[13], pixels[16]); NLMEANS_SORT(pixels[10], pixels[16]); NLMEANS_SORT(pixels[10], pixels[13]);
        NLMEANS_SORT(pixels[20], pixels[23]); NLMEANS_SORT(pixels[17], pixels[23]); NLMEANS_SORT(pixels[17], pixels[20]);
        NLMEANS_SORT(pixels[21], pixels[24]); NLMEANS_SORT(pixels[18], pixels[24]); NLMEANS_SORT(pixels[18], pixels[21]);
        NLMEANS_SORT(pixels[19], pixels[22]); NLMEANS_SORT(pixels[8],  pixels[17]); NLMEANS_SORT(pixels[9],  pixels[18]);
        NLMEANS_SORT(pixels[0],  pixels[18]); NLMEANS_SORT(pixels[0],  pixels[9]);  NLMEANS_SORT(pixels[10], pixels[19]);
        NLMEANS_SORT(pixels[1],  pixels[19]); NLMEANS_SORT(pixels[1],  pixels[10]); NLMEANS_SORT(pixels[11], pixels[20]);
        NLMEANS_SORT(pixels[2],  pixels[20]); NLMEANS_SORT(pixels[2],  pixels[11]); NLMEANS_SORT(pixels[12], pixels[21]);
        NLMEANS_SORT(pixels[3],  pixels[21]); NLMEANS_SORT(pixels[3],  pixels[12]); NLMEANS_SORT(pixels[13], pixels[22]);
        NLMEANS_SORT(pixels[4],  pixels[22]); NLMEANS_SORT(pixels[4],  pixels[13]); NLMEANS_SORT(pixels[14], pixels[23]);
        NLMEANS_SORT(pixels[5],  pixels[23]); NLMEANS_SORT(pixels[5],  pixels[14]); NLMEANS_SORT(pixels[15], pixels[24]);
        NLMEANS_SORT(pixels[6],  pixels[24]); NLMEANS_SORT(pixels[6],  pixels[15]); NLMEANS_SORT(pixels[7],  pixels[16]);
        NLMEANS_SORT(pixels[7],  pixels[19]); NLMEANS_SORT(pixels[13], pixels[21]); NLMEANS_SORT(pixels[15], pixels[23]);
        NLMEANS_SORT(pixels[7],  pixels[13]); NLMEANS_SORT(pixels[7],  pixels[15]); NLMEANS_SORT(pixels[1],  pixels[9]);
        NLMEANS_SORT(pixels[3],  pixels[11]); NLMEANS_SORT(pixels[5],  pixels[17]); NLMEANS_SORT(pixels[11], pixels[17]);
        NLMEANS_SORT(pixels[9],  pixels[17]); NLMEANS_SORT(pixels[4],  pixels[10]); NLMEANS_SORT(pixels[6],  pixels[12]);
        NLMEANS_SORT(pixels[7],  pixels[14]); NLMEANS_SORT(pixels[4],  pixels[6]);  NLMEANS_SORT(pixels[4],  pixels[7]);
        NLMEANS_SORT(pixels[12], pixels[14]); NLMEANS_SORT(pixels[10], pixels[14]); NLMEANS_SORT(pixels[6],  pixels[7]);
        NLMEANS_SORT(pixels[10], pixels[12]); NLMEANS_SORT(pixels[6],  pixels[10]); NLMEANS_SORT(pixels[6],  pixels[17]);
        NLMEANS_SORT(pixels[12], pixels[17]); NLMEANS_SORT(pixels[7],  pixels[17]); NLMEANS_SORT(pixels[7],  pixels[10]);
        NLMEANS_SORT(pixels[12], pixels[18]); NLMEANS_SORT(pixels[7],  pixels[12]); NLMEANS_SORT(pixels[10], pixels[18]);
        NLMEANS_SORT(pixels[12], pixels[20]); NLMEANS_SORT(pixels[10], pixels[20]); NLMEANS_SORT(pixels[10], pixels[12]);
        return pixels[12];
    }

    // Network for size not implemented
    return pixels[(int)((size * size)/2)];

}

static void nlmeans_filter_median(uint8_t *src,
                                  uint8_t *dst,
                                  int w,
                                  int h,
                                  int border,
                                  int size)
{
    // Median filter
    int bw = w + 2 * border;
    int offset_min = -((size - 1) /2);
    int offset_max =   (size + 1) /2;
    int index;
    uint8_t pixels[size * size];
    for (int y = 0; y < h; y++)
    {
        for (int x = 0; x < w; x++)
        {
            index = 0;
            for (int k = offset_min; k < offset_max; k++)
            {
                for (int j = offset_min; j < offset_max; j++)
                {
                    pixels[index] = *(src + bw*(y+j) + (x+k));
                    index++;
                }
            }
            *(dst + bw*y + x) = nlmeans_filter_median_opt(pixels, size);
        }
    }

}

static void nlmeans_filter_edgeboost(uint8_t *src,
                                     uint8_t *dst,
                                     int w,
                                     int h,
                                     int border)
{
    int bw = w + 2 * border;
    int bh = h + 2 * border;

    // Custom kernel
    int kernel_size = 3;
    int kernel[3][3] = {{-31, 0, 31},
                        {-44, 0, 44},
                        {-31, 0, 31}};
    double kernel_coef = 1.0 / 126.42;

    // Detect edges
    int offset_min = -((kernel_size - 1) /2);
    int offset_max =   (kernel_size + 1) /2;
    uint16_t pixel1;
    uint16_t pixel2;
    uint8_t *mask_mem = calloc(bw * bh, sizeof(uint8_t));
    uint8_t *mask = mask_mem + border + bw * border;
    for (int y = 0; y < h; y++)
    {
        for (int x = 0; x < w; x++)
        {
            pixel1 = 0;
            pixel2 = 0;
            for (int k = offset_min; k < offset_max; k++)
            {
                for (int j = offset_min; j < offset_max; j++)
                {
                    pixel1 += kernel[j+1][k+1] * *(src + bw*(y+j) + (x+k));
                    pixel2 += kernel[k+1][j+1] * *(src + bw*(y+j) + (x+k));
                }
            }
            pixel1 = pixel1 > 0 ? pixel1 : -pixel1;
            pixel2 = pixel2 > 0 ? pixel2 : -pixel2;
            pixel1 = (uint16_t)(((double)pixel1 * kernel_coef) + 128);
            pixel2 = (uint16_t)(((double)pixel2 * kernel_coef) + 128);
            *(mask + bw*y + x) = (uint8_t)(pixel1 + pixel2);
            if (*(mask + bw*y + x) > 160)
            {
                *(mask + bw*y + x) = 235;
            }
            else if (*(mask + bw*y + x) > 16)
            {
                *(mask + bw*y + x) = 128;
            }
            else
            {
                *(mask + bw*y + x) = 16;
            }
        }
    }

    // Post-process and output
    int pixels;
    for (int y = 0; y < h; y++)
    {
        for (int x = 0; x < w; x++)
        {
            if (*(mask + bw*y + x) > 16)
            {
                // Count nearby edge pixels
                pixels = 0;
                for (int k = offset_min; k < offset_max; k++)
                {
                    for (int j = offset_min; j < offset_max; j++)
                    {
                        if (*(mask + bw*(y+j) + (x+k)) > 16)
                        {
                            pixels++;
                        }
                    }
                }
                // Remove false positive
                if (pixels < 3)
                {
                    *(mask + bw*y + x) = 16;
                }
                // Filter output
                if (*(mask + bw*y + x) > 16)
                {
                    if (*(mask + bw*y + x) == 235)
                    {
                        *(dst + bw*y + x) = (3 * *(src + bw*y + x) + 1 * *(dst + bw*y + x)) /4;
                    }
                    else
                    {
                        *(dst + bw*y + x) = (2 * *(src + bw*y + x) + 3 * *(dst + bw*y + x)) /5;
                    }
                    //*(dst + bw*y + x) = *(mask + bw*y + x); // Overlay mask
                }
            }
            //*(dst + bw*y + x) = *(mask + bw*y + x); // Full mask
        }
    }

    free(mask_mem);
}

static void nlmeans_prefilter(BorderedPlane *src,
                              int filter_type)
{
    hb_lock(src->mutex);
    if (src->prefiltered)
    {
        hb_unlock(src->mutex);
        return;
    }

    if (filter_type & NLMEANS_PREFILTER_MODE_MEAN3X3   ||
        filter_type & NLMEANS_PREFILTER_MODE_MEAN5X5   ||
        filter_type & NLMEANS_PREFILTER_MODE_MEDIAN3X3 ||
        filter_type & NLMEANS_PREFILTER_MODE_MEDIAN5X5)
    {

        // Source image
        uint8_t *mem   = src->mem;
        uint8_t *image = src->image;
        int border     = src->border;
        int w          = src->w;
        int h          = src->h;
        int bw         = w + 2 * border;
        int bh         = h + 2 * border;

        // Duplicate plane
        uint8_t *mem_pre = malloc(bw * bh * sizeof(uint8_t));
        uint8_t *image_pre = mem_pre + border + bw * border;
        for (int y = 0; y < h; y++)
        {
            memcpy(mem_pre + y * bw, mem + y * bw, bw);
        }

        // Filter plane; should already have at least 2px extra border on each side
        if (filter_type & NLMEANS_PREFILTER_MODE_MEDIAN5X5)
        {
            // Median 5x5
            nlmeans_filter_median(image, image_pre, w, h, border, 5);
        }
        else if (filter_type & NLMEANS_PREFILTER_MODE_MEDIAN3X3)
        {
            // Median 3x3
            nlmeans_filter_median(image, image_pre, w, h, border, 3);
        }
        else if (filter_type & NLMEANS_PREFILTER_MODE_MEAN5X5)
        {
            // Mean 5x5
            nlmeans_filter_mean(image, image_pre, w, h, border, 5);
        }
        else if (filter_type & NLMEANS_PREFILTER_MODE_MEAN3X3)
        {
            // Mean 3x3
            nlmeans_filter_mean(image, image_pre, w, h, border, 3);
        }

        // Restore edges
        if (filter_type & NLMEANS_PREFILTER_MODE_EDGEBOOST)
        {
            nlmeans_filter_edgeboost(image, image_pre, w, h, border);
        }

        // Blend source and destination for lesser effect
        int wet = 1;
        int dry = 0;
        if (filter_type & NLMEANS_PREFILTER_MODE_REDUCE50 &&
            filter_type & NLMEANS_PREFILTER_MODE_REDUCE25)
        {
            wet = 1;
            dry = 3;
        }
        else if (filter_type & NLMEANS_PREFILTER_MODE_REDUCE50)
        {
            wet = 1;
            dry = 1;
        }
        else if (filter_type & NLMEANS_PREFILTER_MODE_REDUCE25)
        {
            wet = 3;
            dry = 1;
        }
        if (dry > 0)
        {
            for (int y = 0; y < bh; y++)
            {
                for (int x = 0; x < bw; x++)
                {
                    *(mem_pre + bw*y + x) = (uint8_t)((wet * *(mem_pre + bw*y + x) + dry * *(mem + bw*y + x)) / (wet + dry));
                }
            }
        }

        // Assign result
        src->mem_pre   = mem_pre;
        src->image_pre = image_pre;

        // Recreate borders
        nlmeans_border(mem_pre, w, h, border);

    }
    src->prefiltered = 1;
    hb_unlock(src->mutex);
}

static void nlmeans_plane(Frame *frame,
                          int prefilter,
                          int plane,
                          int nframes,
                          uint8_t *dst,
                          int w,
                          int s,
                          int h,
                          double h_param,
                          double origin_tune,
                          int n,
                          int r)
{
    int n_half = (n-1) /2;
    int r_half = (r-1) /2;

    // Source image
    uint8_t *src     = frame[0].plane[plane].image;
    uint8_t *src_pre = frame[0].plane[plane].image_pre;
    int border       = frame[0].plane[plane].border;
    int src_w        = frame[0].plane[plane].w + 2 * border;

    // Allocate temporary pixel sums
    struct PixelSum *tmp_data = calloc(w * h, sizeof(struct PixelSum));

    // Allocate integral image
    int integral_stride = w + 2 * 16;
    uint32_t *integral_mem = malloc(integral_stride * (h+1) * sizeof(uint32_t));
    uint32_t *integral     = integral_mem + integral_stride + 16;

    // Precompute exponential table
    float exptable[NLMEANS_EXPSIZE];
    const float weight_factor       = 1.0/n/n / (h_param * h_param);
    const float min_weight_in_table = 0.0005;
    const float stretch             = NLMEANS_EXPSIZE / (-log(min_weight_in_table));
    const float weight_fact_table   = weight_factor * stretch;
    const int   diff_max            = NLMEANS_EXPSIZE / weight_fact_table;
    for (int i = 0; i < NLMEANS_EXPSIZE; i++)
    {
        exptable[i] = exp(-i/stretch);
    }
    exptable[NLMEANS_EXPSIZE-1] = 0;

    // Iterate through available frames
    for (int f = 0; f < nframes; f++)
    {
        nlmeans_prefilter(&frame[f].plane[plane], prefilter);

        // Compare image
        uint8_t *compare     = frame[f].plane[plane].image;
        uint8_t *compare_pre = frame[f].plane[plane].image_pre;
        int border           = frame[f].plane[plane].border;
        int compare_w        = frame[f].plane[plane].w + 2 * border;

        // Iterate through all displacements
        for (int dy = -r_half; dy <= r_half; dy++)
        {
            for (int dx = -r_half; dx <= r_half; dx++)
            {

                // Apply special weight tuning to origin patch
                if (dx == 0 && dy == 0 && f == 0)
                {
                    // TODO: Parallelize this
                    for (int y = n_half; y < h-n + n_half; y++)
                    {
                        for (int x = n_half; x < w-n + n_half; x++)
                        {
                            tmp_data[y*w + x].weight_sum += origin_tune;
                            tmp_data[y*w + x].pixel_sum  += origin_tune * src[y*src_w + x];
                        }
                    }
                    continue;
                }

                // Build integral
                memset(integral-1 - integral_stride, 0, (w+1) * sizeof(uint32_t));
                for (int y = 0; y < h; y++)
                {
                    const uint8_t *p1 = src_pre + y*src_w;
                    const uint8_t *p2 = compare_pre + (y+dy)*compare_w + dx;
                    uint32_t *out = integral + (y*integral_stride) - 1;

                    *out++ = 0;

                    for (int x = 0; x < w; x++)
                    {
                        int diff = *p1++ - *p2++;
                        *out = *(out-1) + diff * diff;
                        out++;
                    }

                    if (y > 0)
                    {
                        out = integral + y*integral_stride;

                        for (int x = 0; x < w; x++)
                        {
                            *out += *(out - integral_stride);
                            out++;
                        }
                    }
                }

                // Average displacement
                // TODO: Parallelize this
                for (int y = 0; y <= h-n; y++)
                {
                    const uint32_t *integral_ptr1 = integral + (y  -1)*integral_stride - 1;
                    const uint32_t *integral_ptr2 = integral + (y+n-1)*integral_stride - 1;

                    for (int x = 0; x <= w-n; x++)
                    {
                        int xc = x + n_half;
                        int yc = y + n_half;

                        // Difference between patches
                        int diff = (uint32_t)(integral_ptr2[n] - integral_ptr2[0] - integral_ptr1[n] + integral_ptr1[0]);

                        // Sum pixel with weight
                        if (diff < diff_max)
                        {
                            int diffidx = diff * weight_fact_table;

                            //float weight = exp(-diff*weightFact);
                            float weight = exptable[diffidx];

                            tmp_data[yc*w + xc].weight_sum += weight;
                            tmp_data[yc*w + xc].pixel_sum  += weight * compare[(yc+dy)*compare_w + xc + dx];
                        }

                        integral_ptr1++;
                        integral_ptr2++;
                    }
                }
            }
        }
    }

    // Copy edges
    for (int y = 0; y < h; y++)
    {
        for (int x = 0; x < n_half; x++)
        {
            *(dst + y * s + x)           = *(src + y * src_w - x - 1);
            *(dst + y * s - x + (w - 1)) = *(src + y * src_w + x + w);
        }
    }
    for (int y = 0; y < n_half; y++)
    {
        memcpy(dst +       y*s, src - (y+1)*src_w, w);
        memcpy(dst + (h-y-1)*s, src + (y+h)*src_w, w);
    }

    // Copy main image
    uint8_t result;
    for (int y = n_half; y < h-n_half; y++)
    {
        for (int x = n_half; x < w-n_half; x++)
        {
            result = (uint8_t)(tmp_data[y*w + x].pixel_sum / tmp_data[y*w + x].weight_sum);
            *(dst + y*s + x) = result ? result : *(src + y*src_w + x);
        }
    }

    free(tmp_data);
    free(integral_mem);

}

static int nlmeans_init(hb_filter_object_t *filter,
                           hb_filter_init_t *init)
{
    filter->private_data = calloc(sizeof(struct hb_filter_private_s), 1);
    hb_filter_private_t *pv = filter->private_data;

    // Mark parameters unset
    for (int c = 0; c < 3; c++)
    {
        pv->strength[c]    = -1;
        pv->origin_tune[c] = -1;
        pv->patch_size[c]  = -1;
        pv->range[c]       = -1;
        pv->nframes[c]     = -1;
        pv->prefilter[c]   = -1;
    }

    // Read user parameters
    if (filter->settings != NULL)
    {
        sscanf(filter->settings, "%lf:%lf:%d:%d:%d:%d:%lf:%lf:%d:%d:%d:%d:%lf:%lf:%d:%d:%d:%d",
               &pv->strength[0], &pv->origin_tune[0], &pv->patch_size[0], &pv->range[0], &pv->nframes[0], &pv->prefilter[0],
               &pv->strength[1], &pv->origin_tune[1], &pv->patch_size[1], &pv->range[1], &pv->nframes[1], &pv->prefilter[1],
               &pv->strength[2], &pv->origin_tune[2], &pv->patch_size[2], &pv->range[2], &pv->nframes[2], &pv->prefilter[2]);
    }

    // Cascade values
    // Cr not set; inherit Cb. Cb not set; inherit Y. Y not set; defaults.
    for (int c = 1; c < 3; c++)
    {
        if (pv->strength[c]    == -1) { pv->strength[c]    = pv->strength[c-1]; }
        if (pv->origin_tune[c] == -1) { pv->origin_tune[c] = pv->origin_tune[c-1]; }
        if (pv->patch_size[c]  == -1) { pv->patch_size[c]  = pv->patch_size[c-1]; }
        if (pv->range[c]       == -1) { pv->range[c]       = pv->range[c-1]; }
        if (pv->nframes[c]     == -1) { pv->nframes[c]     = pv->nframes[c-1]; }
        if (pv->prefilter[c]   == -1) { pv->prefilter[c]   = pv->prefilter[c-1]; }
    }

    for (int c = 0; c < 3; c++)
    {
        // Replace unset values with defaults
        if (pv->strength[c]    == -1) { pv->strength[c]    = c ? NLMEANS_STRENGTH_LUMA_DEFAULT    : NLMEANS_STRENGTH_CHROMA_DEFAULT; }
        if (pv->origin_tune[c] == -1) { pv->origin_tune[c] = c ? NLMEANS_ORIGIN_TUNE_LUMA_DEFAULT : NLMEANS_ORIGIN_TUNE_CHROMA_DEFAULT; }
        if (pv->patch_size[c]  == -1) { pv->patch_size[c]  = c ? NLMEANS_PATCH_SIZE_LUMA_DEFAULT  : NLMEANS_PATCH_SIZE_CHROMA_DEFAULT; }
        if (pv->range[c]       == -1) { pv->range[c]       = c ? NLMEANS_RANGE_LUMA_DEFAULT       : NLMEANS_RANGE_CHROMA_DEFAULT; }
        if (pv->nframes[c]     == -1) { pv->nframes[c]     = c ? NLMEANS_FRAMES_LUMA_DEFAULT      : NLMEANS_FRAMES_CHROMA_DEFAULT; }
        if (pv->prefilter[c]   == -1) { pv->prefilter[c]   = c ? NLMEANS_PREFILTER_LUMA_DEFAULT   : NLMEANS_PREFILTER_CHROMA_DEFAULT; }

        // Sanitize
        if (pv->strength[c] < 0)        { pv->strength[c] = 0; }
        if (pv->origin_tune[c] < 0.01)  { pv->origin_tune[c] = 0.01; } // avoid black artifacts
        if (pv->origin_tune[c] > 1)     { pv->origin_tune[c] = 1; }
        if (pv->patch_size[c] % 2 == 0) { pv->patch_size[c]--; }
        if (pv->patch_size[c] < 1)      { pv->patch_size[c] = 1; }
        if (pv->range[c] % 2 == 0)      { pv->range[c]--; }
        if (pv->range[c] < 1)           { pv->range[c] = 1; }
        if (pv->nframes[c] < 1)         { pv->nframes[c] = 1; }
        if (pv->nframes[c] > NLMEANS_FRAMES_MAX) { pv->nframes[c] = NLMEANS_FRAMES_MAX; }
        if (pv->prefilter[c] < 0)       { pv->prefilter[c] = 0; }

        if (pv->max_frames < pv->nframes[c]) pv->max_frames = pv->nframes[c];
    }

    pv->thread_count = hb_get_cpu_count();
    pv->frame = calloc(pv->thread_count + pv->max_frames, sizeof(Frame));
    for (int ii = 0; ii < pv->thread_count + pv->max_frames; ii++)
    {
        for (int c = 0; c < 3; c++)
        {
            pv->frame[ii].plane[c].mutex = hb_lock_init();
        }
    }

    pv->thread_data = malloc(pv->thread_count * sizeof(nlmeans_thread_arg_t*));
    if (taskset_init(&pv->taskset, pv->thread_count,
                     sizeof(nlmeans_thread_arg_t)) == 0)
    {
        hb_error("nlmeans could not initialize taskset");
        goto fail;
    }

    for (int ii = 0; ii < pv->thread_count; ii++)
    {
        pv->thread_data[ii] = taskset_thread_args(&pv->taskset, ii);
        if (pv->thread_data[ii] == NULL)
        {
            hb_error("nlmeans could not create thread args");
            goto fail;
        }
        pv->thread_data[ii]->pv = pv;
        pv->thread_data[ii]->segment = ii;
        if (taskset_thread_spawn(&pv->taskset, ii, "nlmeans_filter",
                                 nlmeans_filter_thread, HB_NORMAL_PRIORITY) == 0)
        {
            hb_error("nlmeans could not spawn thread");
            goto fail;
        }
    }

    return 0;

fail:
    taskset_fini(&pv->taskset);
    free(pv->thread_data);
    free(pv);
    return -1;
}

static void nlmeans_close(hb_filter_object_t *filter)
{
    hb_filter_private_t *pv = filter->private_data;

    if (pv == NULL)
    {
        return;
    }

    taskset_fini(&pv->taskset);
    for (int c = 0; c < 3; c++)
    {
        for (int f = 0; f < pv->nframes[c]; f++)
        {
            if (pv->frame[f].plane[c].mem_pre != NULL &&
                pv->frame[f].plane[c].mem_pre != pv->frame[f].plane[c].mem)
            {
                free(pv->frame[f].plane[c].mem_pre);
                pv->frame[f].plane[c].mem_pre = NULL;
            }
            if (pv->frame[f].plane[c].mem != NULL)
            {
                free(pv->frame[f].plane[c].mem);
                pv->frame[f].plane[c].mem = NULL;
            }
        }
    }

    for (int ii = 0; ii < pv->thread_count + pv->max_frames; ii++)
    {
        for (int c = 0; c < 3; c++)
        {
            hb_lock_close(&pv->frame[ii].plane[c].mutex);
        }
    }

    free(pv->frame);
    free(pv->thread_data);
    free(pv);
    filter->private_data = NULL;
}

static void nlmeans_filter_thread(void *thread_args_v)
{
    nlmeans_thread_arg_t *thread_data = thread_args_v;
    hb_filter_private_t *pv = thread_data->pv;
    int segment = thread_data->segment;

    hb_log("NLMeans Denoise thread started for segment %d", segment);

    while (1)
    {
        // Wait until there is work to do.
        taskset_thread_wait4start(&pv->taskset, segment);

        if (taskset_thread_stop(&pv->taskset, segment))
        {
            break;
        }

        Frame *frame = &pv->frame[segment];
        hb_buffer_t *buf;
        buf = hb_frame_buffer_init(frame->fmt, frame->width, frame->height);

        for (int c = 0; c < 3; c++)
        {
            if (pv->strength[c] == 0)
            {
                nlmeans_deborder(&frame->plane[c], buf->plane[c].data,
                                 buf->plane[c].width, buf->plane[c].stride,
                                 buf->plane[c].height);
                continue;
            }
            if (pv->prefilter[c] & NLMEANS_PREFILTER_MODE_PASSTHRU)
            {
                nlmeans_prefilter(&pv->frame->plane[c], pv->prefilter[c]);
                nlmeans_deborder(&frame->plane[c], buf->plane[c].data,
                                 buf->plane[c].width, buf->plane[c].stride,
                                 buf->plane[c].height);
                continue;
            }

            // Process current plane
            nlmeans_plane(frame,
                          pv->prefilter[c],
                          c,
                          pv->nframes[c],
                          buf->plane[c].data,
                          buf->plane[c].width,
                          buf->plane[c].stride,
                          buf->plane[c].height,
                          pv->strength[c],
                          pv->origin_tune[c],
                          pv->patch_size[c],
                          pv->range[c]);
        }
        buf->s = pv->frame[segment].s;
        thread_data->out = buf;

        // Finished this segment, notify.
        taskset_thread_complete(&pv->taskset, segment);
    }
    taskset_thread_complete(&pv->taskset, segment);
}

static void nlmeans_add_frame(hb_filter_private_t *pv, hb_buffer_t *buf)
{
    for (int c = 0; c < 3; c++)
    {
        // Extend copy of plane with extra border and place in buffer
        int border = ((pv->range[c] + 2) / 2 + 15) / 16 * 16;
        nlmeans_alloc(buf->plane[c].data,
                      buf->plane[c].width,
                      buf->plane[c].stride,
                      buf->plane[c].height,
                      &pv->frame[pv->next_frame].plane[c],
                      border);
        pv->frame[pv->next_frame].s = buf->s;
        pv->frame[pv->next_frame].width = buf->f.width;
        pv->frame[pv->next_frame].height = buf->f.height;
        pv->frame[pv->next_frame].fmt = buf->f.fmt;
    }
    pv->next_frame++;
}

static hb_buffer_t * nlmeans_filter(hb_filter_private_t *pv)
{
    if (pv->next_frame < pv->max_frames + pv->thread_count)
        return NULL;

    taskset_cycle(&pv->taskset);

    // Free buffers that are not needed for next taskset cycle
    for (int c = 0; c < 3; c++)
    {
        for (int t = 0; t < pv->thread_count; t++)
        {
            // Release last frame in buffer
            if (pv->frame[t].plane[c].mem_pre != NULL &&
                pv->frame[t].plane[c].mem_pre != pv->frame[t].plane[c].mem)
            {
                free(pv->frame[t].plane[c].mem_pre);
                pv->frame[t].plane[c].mem_pre = NULL;
            }
            if (pv->frame[t].plane[c].mem != NULL)
            {
                free(pv->frame[t].plane[c].mem);
                pv->frame[t].plane[c].mem = NULL;
            }
        }
    }
    // Shift frames in buffer down
    for (int f = 0; f < pv->max_frames; f++)
    {
        // Don't move the mutex!
        Frame frame = pv->frame[f];
        pv->frame[f] = pv->frame[f+pv->thread_count];
        for (int c = 0; c < 3; c++)
        {
            pv->frame[f].plane[c].mutex = frame.plane[c].mutex;
            pv->frame[f+pv->thread_count].plane[c].mem_pre = NULL;
            pv->frame[f+pv->thread_count].plane[c].mem = NULL;
        }
    }
    pv->next_frame -= pv->thread_count;

    // Collect results from taskset
    hb_buffer_t *last = NULL, *out = NULL;
    for (int t = 0; t < pv->thread_count; t++)
    {
        if (out == NULL)
        {
            out = last = pv->thread_data[t]->out;
        }
        else
        {
            last->next = pv->thread_data[t]->out;
            last = pv->thread_data[t]->out;
        }
    }
    return out;
}

static hb_buffer_t * nlmeans_filter_flush(hb_filter_private_t *pv)
{
    hb_buffer_t *out = NULL, *last = NULL;

    for (int f = 0; f < pv->next_frame; f++)
    {
        Frame *frame = &pv->frame[f];
        hb_buffer_t *buf;
        buf = hb_frame_buffer_init(frame->fmt, frame->width, frame->height);

        for (int c = 0; c < 3; c++)
        {
            if (pv->strength[c] == 0)
            {
                nlmeans_deborder(&frame->plane[c], buf->plane[c].data,
                                 buf->plane[c].width, buf->plane[c].stride,
                                 buf->plane[c].height);
                continue;
            }
            if (pv->prefilter[c] & NLMEANS_PREFILTER_MODE_PASSTHRU)
            {
                nlmeans_prefilter(&pv->frame[f].plane[c], pv->prefilter[c]);
                nlmeans_deborder(&frame->plane[c], buf->plane[c].data,
                                 buf->plane[c].width, buf->plane[c].stride,
                                 buf->plane[c].height);
                continue;
            }

            int nframes = pv->next_frame - f;
            if (pv->nframes[c] < nframes)
                nframes = pv->nframes[c];
            // Process current plane
            nlmeans_plane(frame,
                          pv->prefilter[c],
                          c,
                          nframes,
                          buf->plane[c].data,
                          buf->plane[c].width,
                          buf->plane[c].stride,
                          buf->plane[c].height,
                          pv->strength[c],
                          pv->origin_tune[c],
                          pv->patch_size[c],
                          pv->range[c]);
        }
        buf->s = frame->s;
        if (out == NULL)
        {
            out = last = buf;
        }
        else
        {
            last->next = buf;
            last = buf;
        }
    }
    return out;
}

static int nlmeans_work(hb_filter_object_t *filter,
                           hb_buffer_t **buf_in,
                           hb_buffer_t **buf_out )
{
    hb_filter_private_t *pv = filter->private_data;
    hb_buffer_t *in = *buf_in;

    if (in->size <= 0)
    {
        hb_buffer_t *last;
        // Flush buffered frames
        last = *buf_out = nlmeans_filter_flush(pv);

        // And terminate the buffer list with a null buffer
        if (last != NULL)
        {
            while (last->next != NULL)
                last = last->next;
            last->next = in;
        }
        else
        {
            *buf_out = in;
        }
        *buf_in  = NULL;
        return HB_FILTER_DONE;
    }

    nlmeans_add_frame(pv, in);
    *buf_out = nlmeans_filter(pv);

    return HB_FILTER_OK;
}