1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
|
/* muxcommon.c
Copyright (c) 2003-2019 HandBrake Team
This file is part of the HandBrake source code
Homepage: <http://handbrake.fr/>.
It may be used under the terms of the GNU General Public License v2.
For full terms see the file COPYING file or visit http://www.gnu.org/licenses/gpl-2.0.html
*/
#include "hb.h"
#include "decssasub.h"
#define MIN_BUFFERING (1024*1024*10)
#define MAX_BUFFERING (1024*1024*50)
struct hb_mux_object_s
{
HB_MUX_COMMON;
};
typedef struct
{
int size; // Size in bits
uint32_t * vec;
} hb_bitvec_t;
typedef struct
{
hb_buffer_t **fifo;
uint32_t in; // number of bufs put into fifo
uint32_t out; // number of bufs taken out of fifo
uint32_t flen; // fifo length (must be power of two)
} mux_fifo_t;
typedef struct
{
hb_mux_data_t * mux_data;
uint64_t frames;
uint64_t bytes;
mux_fifo_t mf;
int buffered_size;
} hb_track_t;
typedef struct
{
hb_lock_t * mutex;
int done;
hb_mux_object_t * m;
double pts; // end time of next muxing chunk
double interleave; // size in 90KHz ticks of media chunks we mux
uint32_t max_tracks; // total number of tracks allocated
uint32_t ntracks; // total number of tracks we're muxing
hb_bitvec_t * eof; // bitmask of track with eof
hb_bitvec_t * rdy; // bitmask of tracks ready to output
hb_bitvec_t * allEof; // valid bits in eof (all tracks)
hb_bitvec_t * allRdy; // valid bits in rdy (audio & video tracks)
hb_track_t ** track; // tracks to mux 'max_tracks' elements
int buffered_size;
} hb_mux_t;
struct hb_work_private_s
{
hb_job_t * job;
int track;
hb_mux_t * mux;
hb_list_t * list_work;
};
static int hb_bitvec_add_bits(hb_bitvec_t *bv, int bits)
{
int ii;
int words_cur = (bv->size + 31) >> 5;
int words = (bv->size + bits + 31) >> 5;
if (words > words_cur)
{
uint32_t *tmp = realloc(bv->vec, words * sizeof(uint32_t));
if (tmp == NULL)
{
return -1;
}
for (ii = words_cur; ii < words; ii++)
tmp[ii] = 0;
bv->vec = tmp;
}
bv->size += bits;
return 0;
}
static hb_bitvec_t* hb_bitvec_new(int size)
{
hb_bitvec_t *bv = calloc(sizeof(hb_bitvec_t), 1);
hb_bitvec_add_bits(bv, size);
return bv;
}
static void hb_bitvec_free(hb_bitvec_t **_bv)
{
hb_bitvec_t *bv = *_bv;
free(bv->vec);
free(bv);
*_bv = NULL;
}
static void hb_bitvec_set(hb_bitvec_t *bv, int n)
{
if (n >= bv->size)
return; // Error. Should never happen.
int word = n >> 5;
uint32_t bit = 1 << (n & 0x1F);
bv->vec[word] |= bit;
}
static void hb_bitvec_clr(hb_bitvec_t *bv, int n)
{
if (n >= bv->size)
return; // Error. Should never happen.
int word = n >> 5;
uint32_t bit = 1 << (n & 0x1F);
bv->vec[word] &= ~bit;
}
static void hb_bitvec_zero(hb_bitvec_t *bv)
{
int words = (bv->size + 31) >> 5;
memset(bv->vec, 0, words * sizeof(uint32_t));
}
static int hb_bitvec_bit(hb_bitvec_t *bv, int n)
{
if (n >= bv->size)
return 0; // Error. Should never happen.
int word = n >> 5;
uint32_t bit = 1 << (n & 0x1F);
return !!(bv->vec[word] & bit);
}
static int hb_bitvec_any(hb_bitvec_t *bv)
{
uint32_t result = 0;;
int ii;
int words = (bv->size + 31) >> 5;
for (ii = 0; ii < words; ii++)
result |= bv->vec[ii];
return !!result;
}
static int hb_bitvec_cmp(hb_bitvec_t *bv1, hb_bitvec_t *bv2)
{
if (bv1->size != bv2->size)
return 0;
int ii;
int words = (bv1->size + 31) >> 5;
for (ii = 0; ii < words; ii++)
if (bv1->vec[ii] != bv2->vec[ii])
return 0;
return 1;
}
static int hb_bitvec_and_cmp(hb_bitvec_t *bv1, hb_bitvec_t *bv2, hb_bitvec_t *bv3)
{
if (bv1->size != bv2->size)
return 0;
int ii;
int words = (bv1->size + 31) >> 5;
for (ii = 0; ii < words; ii++)
if ((bv1->vec[ii] & bv2->vec[ii]) != bv3->vec[ii])
return 0;
return 1;
}
static int hb_bitvec_cpy(hb_bitvec_t *bv1, hb_bitvec_t *bv2)
{
if (bv1->size < bv2->size)
{
int result = hb_bitvec_add_bits(bv1, bv2->size - bv1->size);
if (result < 0)
return result;
}
int words = (bv1->size + 31) >> 5;
memcpy(bv1->vec, bv2->vec, words * sizeof(uint32_t));
return 0;
}
// The muxer handles two different kinds of media: Video and audio tracks
// are continuous: once they start they generate continuous, consecutive
// sequence of bufs until they end. The muxer will time align all continuous
// media tracks so that their data will be well interleaved in the output file.
// (Smooth, low latency playback with minimal player buffering requires that
// data that's going to be presented close together in time also be close
// together in the output file). Since HB's audio and video encoders run at
// different speeds, the time-aligning involves buffering *all* the continuous
// media tracks until a frame with a timestamp beyond the current alignment
// point arrives on the slowest fifo (usually the video encoder).
//
// The other kind of media, subtitles, close-captions, vobsubs and
// similar tracks, are intermittent. They generate frames sporadically or on
// human time scales (seconds) rather than near the video frame rate (milliseconds).
// If intermittent sources were treated like continuous sources huge sections of
// audio and video would get buffered waiting for the next subtitle to show up.
// To keep this from happening the muxer doesn't wait for intermittent tracks
// (essentially it assumes that they will always go through the HB processing
// pipeline faster than the associated video). They are still time aligned and
// interleaved at the appropriate point in the output file.
// This routine adds another track for the muxer to process. The media input
// stream will be read from HandBrake fifo 'fifo'. Buffers read from that
// stream will be time-aligned with all the other media streams then passed
// to the container-specific 'mux' routine with argument 'mux_data' (see
// routine OutputTrackChunk). 'is_continuous' must be 1 for an audio or video
// track and 0 otherwise (see above).
static void add_mux_track( hb_mux_t *mux, hb_mux_data_t *mux_data,
int is_continuous )
{
if ( mux->ntracks + 1 > mux->max_tracks )
{
int max_tracks = mux->max_tracks ? mux->max_tracks * 2 : 32;
hb_track_t **tmp;
tmp = realloc(mux->track, max_tracks * sizeof(hb_track_t*));
if (tmp == NULL)
{
hb_error("add_mux_track: realloc failed, too many tracks (>%d)",
max_tracks);
return;
}
mux->track = tmp;
mux->max_tracks = max_tracks;
}
hb_track_t *track = calloc( sizeof( hb_track_t ), 1 );
track->mux_data = mux_data;
track->mf.flen = 8;
track->mf.fifo = calloc( sizeof(track->mf.fifo[0]), track->mf.flen );
int t = mux->ntracks++;
mux->track[t] = track;
hb_bitvec_set(mux->allEof, t);
if (is_continuous)
hb_bitvec_set(mux->allRdy, t);
}
static int mf_full( hb_track_t * track )
{
if ( track->buffered_size > MAX_BUFFERING )
return 1;
return 0;
}
static void mf_push( hb_mux_t * mux, int tk, hb_buffer_t *buf )
{
hb_track_t * track = mux->track[tk];
uint32_t mask = track->mf.flen - 1;
uint32_t in = track->mf.in;
hb_buffer_reduce( buf, buf->size );
if ( track->buffered_size > MAX_BUFFERING )
{
hb_bitvec_cpy(mux->rdy, mux->allRdy);
}
if ( ( ( in + 1 ) & mask ) == ( track->mf.out & mask ) )
{
// fifo is full - expand it to double the current size.
// This is a bit tricky because when we change the size
// it changes the modulus (mask) used to convert the in
// and out counters to fifo indices. Since existing items
// will be referenced at a new location after the expand
// we can't just realloc the fifo. If there were
// hundreds of fifo entries it would be worth it to have code
// for each of the four possible before/after configurations
// but these fifos are small so we just allocate a new chunk
// of memory then do element by element copies using the old &
// new masks then free the old fifo's memory..
track->mf.flen *= 2;
uint32_t nmask = track->mf.flen - 1;
hb_buffer_t **nfifo = malloc( track->mf.flen * sizeof(*nfifo) );
int indx = track->mf.out;
while ( indx != track->mf.in )
{
nfifo[indx & nmask] = track->mf.fifo[indx & mask];
++indx;
}
free( track->mf.fifo );
track->mf.fifo = nfifo;
mask = nmask;
}
track->mf.fifo[in & mask] = buf;
track->mf.in = in + 1;
track->buffered_size += buf->size;
mux->buffered_size += buf->size;
}
static hb_buffer_t *mf_pull( hb_mux_t * mux, int tk )
{
hb_track_t *track =mux->track[tk];
hb_buffer_t *b = NULL;
if ( track->mf.out != track->mf.in )
{
// the fifo isn't empty
b = track->mf.fifo[track->mf.out & (track->mf.flen - 1)];
++track->mf.out;
track->buffered_size -= b->size;
mux->buffered_size -= b->size;
}
return b;
}
static hb_buffer_t *mf_peek( hb_track_t *track )
{
return track->mf.out == track->mf.in ?
NULL : track->mf.fifo[track->mf.out & (track->mf.flen - 1)];
}
static void MoveToInternalFifos( int tk, hb_mux_t *mux, hb_buffer_t * buf )
{
// move all the buffers on the track's fifo to our internal
// fifo so that (a) we don't deadlock in the reader and
// (b) we can control how data from multiple tracks is
// interleaved in the output file.
mf_push( mux, tk, buf );
if ( buf->s.start >= mux->pts )
{
// buffer is past our next interleave point so
// note that this track is ready to be output.
hb_bitvec_set(mux->rdy, tk);
}
}
static void OutputTrackChunk( hb_mux_t *mux, int tk, hb_mux_object_t *m )
{
hb_track_t *track = mux->track[tk];
hb_buffer_t *buf;
while ( ( buf = mf_peek( track ) ) != NULL && buf->s.start < mux->pts )
{
buf = mf_pull( mux, tk );
track->frames += 1;
track->bytes += buf->size;
m->mux( m, track->mux_data, buf );
}
}
static int muxWork( hb_work_object_t * w, hb_buffer_t ** buf_in,
hb_buffer_t ** buf_out )
{
hb_work_private_t * pv = w->private_data;
hb_job_t * job = pv->job;
hb_mux_t * mux = pv->mux;
hb_track_t * track;
int i;
hb_buffer_t * buf = *buf_in;
hb_lock( mux->mutex );
if ( mux->done )
{
hb_unlock( mux->mutex );
return HB_WORK_DONE;
}
if (buf->s.flags & HB_BUF_FLAG_EOF)
{
// EOF - mark this track as done
hb_buffer_close( &buf );
hb_bitvec_set(mux->eof, pv->track);
hb_bitvec_set(mux->rdy, pv->track);
}
else if ((job->pass_id != HB_PASS_ENCODE &&
job->pass_id != HB_PASS_ENCODE_2ND) ||
hb_bitvec_bit(mux->eof, pv->track))
{
hb_buffer_close( &buf );
}
else
{
MoveToInternalFifos( pv->track, mux, buf );
}
*buf_in = NULL;
if (!hb_bitvec_and_cmp(mux->rdy, mux->allRdy, mux->allRdy) &&
!hb_bitvec_and_cmp(mux->eof, mux->allEof, mux->allEof))
{
hb_unlock( mux->mutex );
return HB_WORK_OK;
}
hb_bitvec_t *more;
more = hb_bitvec_new(0);
hb_bitvec_cpy(more, mux->rdy);
// all tracks have at least 'interleave' ticks of data. Output
// all that we can in 'interleave' size chunks.
while ((hb_bitvec_and_cmp(mux->rdy, mux->allRdy, mux->allRdy) &&
hb_bitvec_any(more) && mux->buffered_size > MIN_BUFFERING ) ||
(hb_bitvec_cmp(mux->eof, mux->allEof)))
{
hb_bitvec_zero(more);
for ( i = 0; i < mux->ntracks; ++i )
{
track = mux->track[i];
OutputTrackChunk( mux, i, mux->m );
if ( mf_full( track ) )
{
// If the track's fifo is still full, advance
// the currint interleave point and try again.
hb_bitvec_cpy(mux->rdy, mux->allRdy);
break;
}
// if the track is at eof or still has data that's past
// our next interleave point then leave it marked as rdy.
// Otherwise clear rdy.
if (hb_bitvec_bit(mux->eof, i) &&
(track->mf.out == track->mf.in ||
track->mf.fifo[(track->mf.in-1) & (track->mf.flen-1)]->s.start
< mux->pts + mux->interleave))
{
hb_bitvec_clr(mux->rdy, i);
}
if ( track->mf.out != track->mf.in )
{
hb_bitvec_set(more, i);
}
}
// if all the tracks are at eof we're just purging their
// remaining data -- keep going until all internal fifos are empty.
if (hb_bitvec_cmp(mux->eof, mux->allEof))
{
for ( i = 0; i < mux->ntracks; ++i )
{
if ( mux->track[i]->mf.out != mux->track[i]->mf.in )
{
break;
}
}
if ( i >= mux->ntracks )
{
mux->done = 1;
*w->done = 1;
hb_unlock( mux->mutex );
hb_bitvec_free(&more);
return HB_WORK_DONE;
}
}
mux->pts += mux->interleave;
}
hb_bitvec_free(&more);
hb_unlock( mux->mutex );
return HB_WORK_OK;
}
static void muxFlush(hb_mux_t * mux)
{
int ii, done = 0;
while (!done)
{
done = 1;
for (ii = 0; ii < mux->ntracks; ii++)
{
OutputTrackChunk(mux, ii, mux->m);
if (mux->track[ii]->mf.out != mux->track[ii]->mf.in)
{
// track buffer is not empty
done = 0;
}
}
mux->pts += mux->interleave;
}
}
static void muxClose( hb_work_object_t * muxer )
{
hb_work_private_t * pv = muxer->private_data;
if (pv == NULL)
{
// Not initialized
return;
}
hb_mux_t * mux = pv->mux;
hb_job_t * job = pv->job;
hb_track_t * track;
hb_work_object_t * w;
int i;
hb_lock( mux->mutex );
muxFlush(mux);
// Update state before closing muxer. Closing the muxer
// may initiate optimization which can take a while and
// we want the muxing state to be visible while this is
// happening.
if( job->pass_id == HB_PASS_ENCODE ||
job->pass_id == HB_PASS_ENCODE_2ND )
{
/* Update the UI */
hb_state_t state;
state.state = HB_STATE_MUXING;
state.param.muxing.progress = 0;
hb_set_state( job->h, &state );
}
if( mux->m )
{
mux->m->end( mux->m );
free( mux->m );
}
// we're all done muxing -- print final stats and cleanup.
if( job->pass_id == HB_PASS_ENCODE ||
job->pass_id == HB_PASS_ENCODE_2ND )
{
hb_stat_t sb;
uint64_t bytes_total, frames_total;
if (!hb_stat(job->file, &sb))
{
hb_deep_log( 2, "mux: file size, %"PRId64" bytes", (uint64_t) sb.st_size );
bytes_total = 0;
frames_total = 0;
for( i = 0; i < mux->ntracks; ++i )
{
track = mux->track[i];
hb_log( "mux: track %d, %"PRId64" frames, %"PRId64" bytes, %.2f kbps, fifo %d",
i, track->frames, track->bytes,
90000.0 * track->bytes / mux->pts / 125,
track->mf.flen );
if (!i && job->vquality <= HB_INVALID_VIDEO_QUALITY)
{
/* Video */
hb_deep_log( 2, "mux: video bitrate error, %+"PRId64" bytes",
(int64_t)(track->bytes - mux->pts * job->vbitrate * 125 / 90000) );
}
bytes_total += track->bytes;
frames_total += track->frames;
}
if( bytes_total && frames_total )
{
hb_deep_log( 2, "mux: overhead, %.2f bytes per frame",
(float) ( sb.st_size - bytes_total ) /
frames_total );
}
}
}
for (i = 0; i < mux->ntracks; ++i)
{
hb_buffer_t * b;
track = mux->track[i];
while ( (b = mf_pull( mux, i )) != NULL )
{
hb_buffer_close( &b );
}
if( track->mux_data )
{
free( track->mux_data );
free( track->mf.fifo );
}
free( track );
}
free(mux->track);
hb_unlock( mux->mutex );
hb_lock_close( &mux->mutex );
hb_bitvec_free(&mux->eof);
hb_bitvec_free(&mux->rdy);
hb_bitvec_free(&mux->allEof);
hb_bitvec_free(&mux->allRdy);
free( mux );
// Close mux work threads
while ((w = hb_list_item(pv->list_work, 0)))
{
hb_list_rem(pv->list_work, w);
if (w->thread != NULL)
{
hb_thread_close( &w->thread );
}
free(w->private_data);
free(w);
}
hb_list_close(&pv->list_work);
free( pv );
muxer->private_data = NULL;
}
static int muxInit( hb_work_object_t * muxer, hb_job_t * job )
{
muxer->private_data = calloc( sizeof( hb_work_private_t ), 1 );
hb_work_private_t * pv = muxer->private_data;
hb_mux_t * mux = calloc( sizeof( hb_mux_t ), 1 );
int i;
hb_work_object_t * w;
/* Get a real muxer */
if( job->pass_id == HB_PASS_ENCODE || job->pass_id == HB_PASS_ENCODE_2ND )
{
switch( job->mux )
{
case HB_MUX_AV_MP4:
case HB_MUX_AV_MKV:
mux->m = hb_mux_avformat_init( job );
break;
default:
hb_error( "No muxer selected, exiting" );
free(mux);
*job->done_error = HB_ERROR_INIT;
*job->die = 1;
return -1;
}
}
pv->list_work = hb_list_init();
// The bit vectors must be allocated before hb_thread_init for the
// audio and subtitle muxer jobs below.
int bit_vec_size = 1 + hb_list_count(job->list_audio) +
hb_list_count(job->list_subtitle);
mux->rdy = hb_bitvec_new(bit_vec_size);
mux->eof = hb_bitvec_new(bit_vec_size);
mux->allRdy = hb_bitvec_new(bit_vec_size);
mux->allEof = hb_bitvec_new(bit_vec_size);
mux->mutex = hb_lock_init();
// set up to interleave track data in blocks of 1 video frame time.
// (the best case for buffering and playout latency). The container-
// specific muxers can reblock this into bigger chunks if necessary.
mux->interleave = 90000. * (double)job->vrate.den / job->vrate.num;
mux->pts = mux->interleave;
if( job->pass_id == HB_PASS_ENCODE || job->pass_id == HB_PASS_ENCODE_2ND )
{
/* Create file, write headers */
if( mux->m )
{
mux->m->init( mux->m );
}
}
/* Initialize the work objects that will receive fifo data */
pv->job = job;
pv->mux = mux;
pv->track = mux->ntracks;
muxer->fifo_in = job->fifo_mpeg4;
add_mux_track( mux, job->mux_data, 1 );
for (i = 0; i < hb_list_count(job->list_audio); i++)
{
hb_audio_t *audio = hb_list_item( job->list_audio, i );
w = hb_get_work(job->h, WORK_MUX);
w->private_data = calloc(sizeof(hb_work_private_t), 1);
w->private_data->job = job;
w->private_data->mux = mux;
w->private_data->track = mux->ntracks;
w->fifo_in = audio->priv.fifo_out;
add_mux_track(mux, audio->priv.mux_data, 1);
hb_list_add(pv->list_work, w);
}
for (i = 0; i < hb_list_count(job->list_subtitle); i++)
{
hb_subtitle_t *subtitle = hb_list_item( job->list_subtitle, i );
if (subtitle->config.dest != PASSTHRUSUB)
continue;
w = hb_get_work(job->h, WORK_MUX);
w->private_data = calloc(sizeof(hb_work_private_t), 1);
w->private_data->job = job;
w->private_data->mux = mux;
w->private_data->track = mux->ntracks;
w->fifo_in = subtitle->fifo_out;
add_mux_track(mux, subtitle->mux_data, 0);
hb_list_add(pv->list_work, w);
}
/* Launch processing threads */
for (i = 0; i < hb_list_count(pv->list_work); i++)
{
w = hb_list_item(pv->list_work, i);
w->done = muxer->done;
w->thread = hb_thread_init(w->name, hb_work_loop, w, HB_LOW_PRIORITY);
}
return 0;
}
hb_work_object_t hb_muxer =
{
WORK_MUX,
"Muxer",
muxInit,
muxWork,
muxClose
};
|