1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
/* $Id: muxcommon.c,v 1.23 2005/03/30 17:27:19 titer Exp $
This file is part of the HandBrake source code.
Homepage: <http://handbrake.fr/>.
It may be used under the terms of the GNU General Public License. */
#include "hb.h"
struct hb_mux_object_s
{
HB_MUX_COMMON;
};
typedef struct
{
hb_buffer_t **fifo;
uint32_t in; // number of bufs put into fifo
uint32_t out; // number of bufs taken out of fifo
uint32_t flen; // fifo length (must be power of two)
} mux_fifo_t;
typedef struct
{
hb_fifo_t * fifo;
hb_mux_data_t * mux_data;
uint64_t frames;
uint64_t bytes;
mux_fifo_t mf;
} hb_track_t;
typedef struct
{
hb_job_t *job;
double pts; // end time of next muxing chunk
double interleave; // size (in 90KHz ticks) of media chunks we mux
uint32_t ntracks; // total number of tracks we're muxing
uint32_t eof; // bitmask of track with eof
uint32_t rdy; // bitmask of tracks ready to output
uint32_t allEof; // valid bits in eof (all tracks)
uint32_t allRdy; // valid bits in rdy (audio & video tracks)
hb_track_t *track[32]; // array of tracks to mux ('ntrack' elements)
// NOTE- this array could be dynamically allocated
// but the eof & rdy logic has to be changed to
// handle more than 32 tracks anyway so we keep
// it simple and fast.
} hb_mux_t;
// The muxer handles two different kinds of media: Video and audio tracks
// are continuous: once they start they generate continuous, consecutive
// sequence of bufs until they end. The muxer will time align all continuous
// media tracks so that their data will be well interleaved in the output file.
// (Smooth, low latency playback with minimal player buffering requires that
// data that's going to be presented close together in time also be close
// together in the output file). Since HB's audio and video encoders run at
// different speeds, the time-aligning involves buffering *all* the continuous
// media tracks until a frame with a timestamp beyond the current alignment
// point arrives on the slowest fifo (usually the video encoder).
//
// The other kind of media, subtitles, close-captions, vobsubs and
// similar tracks, are intermittent. They generate frames sporadically or on
// human time scales (seconds) rather than near the video frame rate (milliseconds).
// If intermittent sources were treated like continuous sources huge sections of
// audio and video would get buffered waiting for the next subtitle to show up.
// To keep this from happening the muxer doesn't wait for intermittent tracks
// (essentially it assumes that they will always go through the HB processing
// pipeline faster than the associated video). They are still time aligned and
// interleaved at the appropriate point in the output file.
// This routine adds another track for the muxer to process. The media input
// stream will be read from HandBrake fifo 'fifo'. Buffers read from that
// stream will be time-aligned with all the other media streams then passed
// to the container-specific 'mux' routine with argument 'mux_data' (see
// routine OutputTrackChunk). 'is_continuous' must be 1 for an audio or video
// track and 0 otherwise (see above).
static void add_mux_track( hb_mux_t *mux, hb_fifo_t *fifo, hb_mux_data_t *mux_data,
int is_continuous )
{
int max_tracks = sizeof(mux->track) / sizeof(*(mux->track));
if ( mux->ntracks >= max_tracks )
{
hb_error( "add_mux_track: too many tracks (>%d)", max_tracks );
return;
}
hb_track_t *track = calloc( sizeof( hb_track_t ), 1 );
track->fifo = fifo;
track->mux_data = mux_data;
track->mf.flen = 8;
track->mf.fifo = calloc( sizeof(track->mf.fifo[0]), track->mf.flen );
int t = mux->ntracks++;
mux->track[t] = track;
mux->allEof |= 1 << t;
mux->allRdy |= is_continuous << t;
}
static void mf_push( hb_track_t *track, hb_buffer_t *buf )
{
uint32_t mask = track->mf.flen - 1;
uint32_t in = track->mf.in;
if ( ( ( in + 1 ) & mask ) == ( track->mf.out & mask ) )
{
// fifo is full - expand it to double the current size.
// This is a bit tricky because when we change the size
// it changes the modulus (mask) used to convert the in
// and out counters to fifo indices. Since existing items
// will be referenced at a new location after the expand
// we can't just realloc the fifo. If there were
// hundreds of fifo entries it would be worth it to have code
// for each of the four possible before/after configurations
// but these fifos are small so we just allocate a new chunk
// of memory then do element by element copies using the old &
// new masks then free the old fifo's memory..
track->mf.flen *= 2;
uint32_t nmask = track->mf.flen - 1;
hb_buffer_t **nfifo = malloc( track->mf.flen * sizeof(*nfifo) );
int indx = track->mf.out;
while ( indx != track->mf.in )
{
nfifo[indx & nmask] = track->mf.fifo[indx & mask];
++indx;
}
free( track->mf.fifo );
track->mf.fifo = nfifo;
mask = nmask;
}
track->mf.fifo[in & mask] = buf;
track->mf.in = in + 1;
}
static hb_buffer_t *mf_pull( hb_track_t *track )
{
hb_buffer_t *b = NULL;
if ( track->mf.out != track->mf.in )
{
// the fifo isn't empty
b = track->mf.fifo[track->mf.out & (track->mf.flen - 1)];
++track->mf.out;
}
return b;
}
static void MoveToInternalFifos( hb_mux_t *mux )
{
int i;
int discard = mux->job->pass != 0 && mux->job->pass != 2;
for( i = 0; i < mux->ntracks; ++i )
{
if ( ( mux->eof & (1 << i) ) == 0 )
{
hb_track_t *track = mux->track[i];
hb_buffer_t *buf;
// move all the buffers on the track's fifo to our internal
// fifo so that (a) we don't deadlock in the reader and
// (b) we can control how data from multiple tracks is
// interleaved in the output file.
while ( ( buf = hb_fifo_get( track->fifo ) ) )
{
if ( buf->size <= 0 )
{
// EOF - mark this track as done
hb_buffer_close( &buf );
mux->eof |= ( 1 << i );
mux->rdy |= ( 1 << i );
continue;
}
if ( discard )
{
hb_buffer_close( &buf );
continue;
}
mf_push( track, buf );
if ( buf->stop >= mux->pts )
{
// buffer is past our next interleave point so
// note that this track is ready to be output.
mux->rdy |= ( 1 << i );
}
}
}
}
}
static void OutputTrackChunk( hb_mux_t *mux, hb_track_t *track, hb_mux_object_t *m )
{
hb_buffer_t *buf;
while ( ( buf = mf_pull( track ) ) != NULL )
{
m->mux( m, track->mux_data, buf );
track->frames += 1;
track->bytes += buf->size;
uint64_t pts = buf->stop;
hb_buffer_close( &buf );
if ( pts >= mux->pts )
{
break;
}
}
}
static void MuxerFunc( void * _mux )
{
hb_mux_t * mux = _mux;
hb_job_t * job = mux->job;
hb_title_t * title = job->title;
hb_track_t * track;
int i;
hb_mux_object_t * m = NULL;
// set up to interleave track data in blocks of 1 video frame time.
// (the best case for buffering and playout latency). The container-
// specific muxers can reblock this into bigger chunks if necessary.
mux->interleave = 90000. * (double)job->vrate_base / (double)job->vrate;
mux->pts = mux->interleave;
/* Get a real muxer */
if( job->pass == 0 || job->pass == 2)
{
switch( job->mux )
{
case HB_MUX_MP4:
case HB_MUX_PSP:
case HB_MUX_IPOD:
m = hb_mux_mp4_init( job );
break;
case HB_MUX_AVI:
m = hb_mux_avi_init( job );
break;
case HB_MUX_OGM:
m = hb_mux_ogm_init( job );
break;
case HB_MUX_MKV:
m = hb_mux_mkv_init( job );
}
/* Create file, write headers */
m->init( m );
}
/* Build list of fifos we're interested in */
add_mux_track( mux, job->fifo_mpeg4, job->mux_data, 1 );
for( i = 0; i < hb_list_count( title->list_audio ); i++ )
{
hb_audio_t *audio = hb_list_item( title->list_audio, i );
add_mux_track( mux, audio->priv.fifo_out, audio->priv.mux_data, 1 );
}
// The following 'while' is the main muxing loop.
int thread_sleep_interval = 50;
while( !*job->die )
{
MoveToInternalFifos( mux );
if ( mux->rdy != mux->allRdy )
{
hb_snooze( thread_sleep_interval );
continue;
}
// all tracks have at least 'interleave' ticks of data. Output
// all that we can in 'interleave' size chunks.
while ( mux->rdy == mux->allRdy )
{
for ( i = 0; i < mux->ntracks; ++i )
{
track = mux->track[i];
OutputTrackChunk( mux, track, m );
// if the track is at eof or still has data that's past
// our next interleave point then leave it marked as rdy.
// Otherwise clear rdy.
if ( ( mux->eof & (1 << i) ) == 0 &&
( track->mf.out == track->mf.in ||
track->mf.fifo[(track->mf.in-1) & (track->mf.flen-1)]->stop
< mux->pts + mux->interleave ) )
{
mux->rdy &=~ ( 1 << i );
}
}
// if all the tracks are at eof we're just purging their
// remaining data -- keep going until all internal fifos are empty.
if ( mux->eof == mux->allEof )
{
for ( i = 0; i < mux->ntracks; ++i )
{
if ( mux->track[i]->mf.out != mux->track[i]->mf.in )
{
break;
}
}
if ( i >= mux->ntracks )
{
goto finished;
}
}
mux->pts += mux->interleave;
}
}
// we're all done muxing -- print final stats and cleanup.
finished:
if( job->pass == 0 || job->pass == 2 )
{
struct stat sb;
uint64_t bytes_total, frames_total;
#define p state.param.muxing
/* Update the UI */
hb_state_t state;
state.state = HB_STATE_MUXING;
p.progress = 0;
hb_set_state( job->h, &state );
#undef p
m->end( m );
if( !stat( job->file, &sb ) )
{
hb_deep_log( 2, "mux: file size, %lld bytes", (uint64_t) sb.st_size );
bytes_total = 0;
frames_total = 0;
for( i = 0; i < mux->ntracks; ++i )
{
track = mux->track[i];
hb_log( "mux: track %d, %lld frames, %lld bytes, %.2f kbps, fifo %d",
i, track->frames, track->bytes,
90000.0 * track->bytes / mux->pts / 125,
track->mf.flen );
if( !i && ( job->vquality < 0.0 || job->vquality > 1.0 ) )
{
/* Video */
hb_deep_log( 2, "mux: video bitrate error, %+lld bytes",
track->bytes - mux->pts * job->vbitrate *
125 / 90000 );
}
bytes_total += track->bytes;
frames_total += track->frames;
}
if( bytes_total && frames_total )
{
hb_deep_log( 2, "mux: overhead, %.2f bytes per frame",
(float) ( sb.st_size - bytes_total ) /
frames_total );
}
}
}
free( m );
for( i = 0; i < mux->ntracks; ++i )
{
track = mux->track[i];
if( track->mux_data )
{
free( track->mux_data );
free( track->mf.fifo );
}
free( track );
}
free( mux );
}
hb_thread_t * hb_muxer_init( hb_job_t * job )
{
hb_mux_t * mux = calloc( sizeof( hb_mux_t ), 1 );
mux->job = job;
return hb_thread_init( "muxer", MuxerFunc, mux,
HB_NORMAL_PRIORITY );
}
|