summaryrefslogtreecommitdiffstats
path: root/libhb/declpcm.c
blob: c056d416a1d1b6f842f0229ef4234b8338505971 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/* $Id: declpcm.c,v 1.8 2005/11/04 14:44:01 titer Exp $

   This file is part of the HandBrake source code.
   Homepage: <http://handbrake.fr/>.
   It may be used under the terms of the GNU General Public License. */

#include "hb.h"
#include "downmix.h"

struct hb_work_private_s
{
    hb_job_t    *job;
    uint32_t    size;       /* frame size in bytes */
    uint32_t    chunks;     /* number of samples pairs if paired */
    uint32_t    samples;    /* frame size in samples */
    uint32_t    pos;        /* buffer offset for next input data */

    int64_t     next_pts;   /* pts for next output frame */
    int64_t     sequence;

    /* the following is frame info for the frame we're currently accumulating */
    uint64_t    duration;   /* frame duratin (in 90KHz ticks) */
    uint32_t    offset;     /* where in buf frame starts */
    uint32_t    samplerate; /* sample rate in bits/sec */
    uint8_t     nchannels;
    uint8_t     sample_size; /* bits per sample */

    uint8_t     frame[HB_DVD_READ_BUFFER_SIZE*2];
};

static hb_buffer_t * Decode( hb_work_object_t * w );
static int  declpcmInit( hb_work_object_t *, hb_job_t * );
static int  declpcmWork( hb_work_object_t *, hb_buffer_t **, hb_buffer_t ** );
static void declpcmClose( hb_work_object_t * );
static int  declpcmBSInfo( hb_work_object_t *, const hb_buffer_t *,
                           hb_work_info_t * );

hb_work_object_t hb_declpcm =
{
    WORK_DECLPCM,
    "LPCM decoder",
    declpcmInit,
    declpcmWork,
    declpcmClose,
    0,
    declpcmBSInfo
};

static const int hdr2samplerate[] = { 48000, 96000, 44100, 32000 };
static const int hdr2samplesize[] = { 16, 20, 24, 16 };
static const int hdr2layout[] = {
        HB_INPUT_CH_LAYOUT_MONO,   HB_INPUT_CH_LAYOUT_STEREO,
        HB_INPUT_CH_LAYOUT_2F1R,   HB_INPUT_CH_LAYOUT_2F2R,
        HB_INPUT_CH_LAYOUT_3F2R,   HB_INPUT_CH_LAYOUT_4F2R,
        HB_INPUT_CH_LAYOUT_STEREO, HB_INPUT_CH_LAYOUT_STEREO,
};

static void lpcmInfo( hb_work_object_t *w, hb_buffer_t *in )
{
    hb_work_private_t * pv = w->private_data;

    /*
     * LPCM packets have a 7 byte header (the substream id is stripped off
     * before we get here so it's numbered -1 below)::
     * byte -1  Substream id
     * byte 0   Number of frames that begin in this packet
     *          (last frame may finish in next packet)
     * byte 1,2 offset to first frame that begins in this packet (not including hdr)
     * byte 3:
     *   bits 0-4  continuity counter (increments modulo 20)
     *   bit   5   reserved
     *   bit   6   audio mute on/off
     *   bit   7   audio emphasis on/off
     * byte 4:
     *   bits 0-2  #channels - 1 (e.g., stereo = 1)
     *   bit   3   reserved
     *   bits 4-5  sample rate (0=48K,1=96K,2=44.1K,3=32K)
     *   bits 6-7  bits per sample (0=16 bit, 1=20 bit, 2=24 bit)
     * byte 5   Dynamic range control (0x80 = off)
     *
     * The audio is viewed as "frames" of 150 90KHz ticks each (80 samples @ 48KHz).
     * The frames are laid down continuously without regard to MPEG packet
     * boundaries. E.g., for 48KHz stereo, the first packet will contain 6
     * frames plus the start of the 7th, the second packet will contain the
     * end of the 7th, 8-13 & the start of 14, etc. The frame structure is
     * important because the PTS on the packet gives the time of the first
     * frame that starts in the packet *NOT* the time of the first sample 
     * in the packet. Also samples get split across packet boundaries
     * so we can't assume that we can consume all the data in one packet
     * on every call to the work routine.
     */
    pv->offset = ( ( in->data[1] << 8 ) | in->data[2] ) + 2;
    if ( pv->offset >= HB_DVD_READ_BUFFER_SIZE )
    {
        hb_log( "declpcm: illegal frame offset %d", pv->offset );
        pv->offset = 2; /*XXX*/
    }
    pv->samplerate = hdr2samplerate[ ( in->data[4] >> 4 ) & 0x3 ];
    pv->nchannels  = ( in->data[4] & 7 ) + 1;
    pv->sample_size = hdr2samplesize[in->data[4] >> 6];

    // 20 and 24 bit lpcm is always encoded in sample pairs.  So take this
    // into account when computing sizes.
    int chunk_size = pv->sample_size / 8;
    int samples_per_chunk = 1;

    switch( pv->sample_size )
    {
        case 20:
            chunk_size = 5;
            samples_per_chunk = 2;
            break;
        case 24:
            chunk_size = 6;
            samples_per_chunk = 2;
            break;
    }

    /*
     * PCM frames have a constant duration (150 90KHz ticks).
     * We need to convert that to the amount of data expected.  It's the
     * duration divided by the sample rate (to get #samples) times the number
     * of channels times the bits per sample divided by 8 to get bytes.
     * (we have to compute in bits because 20 bit samples are not an integral
     * number of bytes). We do all the multiplies first then the divides to
     * avoid truncation errors. 
     */
    /*
     * Don't trust the number of frames given in the header.  We've seen
     * streams for which this is incorrect, and it can be computed.
     * pv->duration = in->data[0] * 150;
     */
    int chunks = ( in->size - pv->offset ) / chunk_size;
    int samples = chunks * samples_per_chunk;

    // Calculate number of frames that start in this packet
    int frames = ( 90000 * samples / ( pv->samplerate * pv->nchannels ) + 
                   149 ) / 150;

    pv->duration = frames * 150;
    pv->chunks =  ( pv->duration * pv->nchannels * pv->samplerate + 
                    samples_per_chunk - 1 ) / ( 90000 * samples_per_chunk );
    pv->samples = ( pv->duration * pv->nchannels * pv->samplerate ) / 90000;
    pv->size = pv->chunks * chunk_size;

    pv->next_pts = in->start;
}

static int declpcmInit( hb_work_object_t * w, hb_job_t * job )
{
    hb_work_private_t * pv = calloc( 1, sizeof( hb_work_private_t ) );
    w->private_data = pv;
    pv->job   = job;
    return 0;
}

/* 
 * Convert DVD encapsulated LPCM to floating point PCM audio buffers.
 * The amount of audio in a PCM frame is always <= the amount that will fit
 * in a DVD block (2048 bytes) but the standard doesn't require that the audio
 * frames line up with the DVD frames. Since audio frame boundaries are unrelated
 * to DVD PES boundaries, this routine has to reconstruct then extract the audio
 * frames. Because of the arbitrary alignment, it can output zero, one or two buf's.
 */
static int declpcmWork( hb_work_object_t * w, hb_buffer_t ** buf_in,
                 hb_buffer_t ** buf_out )
{
    hb_work_private_t * pv = w->private_data;
    hb_buffer_t *in = *buf_in;
    hb_buffer_t *buf = NULL;

    if ( in->size <= 0 )
    {
        /* EOF on input stream - send it downstream & say that we're done */
        *buf_out = in;
        *buf_in = NULL;
        return HB_WORK_DONE;
    }

    pv->sequence = in->sequence;

    /* if we have a frame to finish, add enough data from this buf to finish it */
    if ( pv->size )
    {
        memcpy( pv->frame + pv->pos, in->data + 6, pv->size - pv->pos );
        buf = Decode( w );
    }
    *buf_out = buf;

    /* save the (rest of) data from this buf in our frame buffer */
    lpcmInfo( w, in );
    int off = pv->offset;
    int amt = in->size - off;
    pv->pos = amt;
    memcpy( pv->frame, in->data + off, amt );
    if ( amt >= pv->size )
    {
        if ( buf )
        {
            buf->next = Decode( w );
        }
        else
        {
            *buf_out = Decode( w );
        }
        pv->size = 0;
    }
    return HB_WORK_OK;
}

static hb_buffer_t *Decode( hb_work_object_t *w )
{
    hb_work_private_t *pv = w->private_data;
    hb_buffer_t *out;
 
    if (pv->samples == 0)
        return NULL;

    out = hb_buffer_init( pv->samples * sizeof( float ) );

    out->start  = pv->next_pts;
    out->duration = pv->duration;
    pv->next_pts += pv->duration;
    out->stop = pv->next_pts;

    float *odat = (float *)out->data;
    int count = pv->chunks / pv->nchannels;

    switch( pv->sample_size )
    {
        case 16: // 2 byte, big endian, signed (the right shift sign extends)
        {
            uint8_t *frm = pv->frame;
            while ( count-- )
            {
                int cc;
                for( cc = 0; cc < pv->nchannels; cc++ )
                {
                    // Shifts below result in sign extension which gives
                    // us proper signed values. The final division adjusts
                    // the range to [-1.0 ... 1.0]
                    *odat++ = (float)( ( (int)( frm[0] << 24 ) >> 16 ) | 
                                       frm[1] ) / 32768.0;
                    frm += 2;
                }
            }
        } break;
        case 20:
        {
            // There will always be 2 groups of samples.  A group is
            // a collection of samples that spans all channels.
            // The data for the samples is split.  The first 2 msb
            // bytes for all samples is encoded first, then the remaining
            // lsb bits are encoded.
            uint8_t *frm = pv->frame;
            while ( count-- )
            {
                int gg, cc;
                int shift = 4;
                uint8_t *lsb = frm + 4 * pv->nchannels;
                for( gg = 0; gg < 2; gg++ )
                {
                    for( cc = 0; cc < pv->nchannels; cc++ )
                    {
                        // Shifts below result in sign extension which gives
                        // us proper signed values. The final division adjusts
                        // the range to [-1.0 ... 1.0]
                        *odat = (float)( ( (int)( frm[0] << 24 ) >> 12 ) |
                                         ( frm[1] << 4 ) |
                                         ( ( ( lsb[0] >> shift ) & 0x0f ) ) ) /
                                       (16. * 32768.0);
                        odat++;
                        lsb += !shift;
                        shift ^= 4;
                        frm += 2;
                    }
                }
                frm = lsb;
            }
        } break;
        case 24:
        {
            // There will always be 2 groups of samples.  A group is
            // a collection of samples that spans all channels.
            // The data for the samples is split.  The first 2 msb
            // bytes for all samples is encoded first, then the remaining
            // lsb bits are encoded.
            uint8_t *frm = pv->frame;
            while ( count-- )
            {
                int gg, cc;
                uint8_t *lsb = frm + 4 * pv->nchannels;
                for( gg = 0; gg < 2; gg++ )
                {
                    for( cc = 0; cc < pv->nchannels; cc++ )
                    {
                        // Shifts below result in sign extension which gives
                        // us proper signed values. The final division adjusts
                        // the range to [-1.0 ... 1.0]
                        *odat++ = (float)( ( (int)( frm[0] << 24 ) >> 8 ) |
                                           ( frm[1] << 8 ) | lsb[0] ) / 
                                  (256. * 32768.0);
                        frm += 2;
                        lsb++;
                    }
                }
                frm = lsb;
            }
        } break;
    }
    return out;
}

static void declpcmClose( hb_work_object_t * w )
{
    if ( w->private_data )
    {
        free( w->private_data );
        w->private_data = 0;
    }
}

static int declpcmBSInfo( hb_work_object_t *w, const hb_buffer_t *b,
                          hb_work_info_t *info )
{
    int nchannels  = ( b->data[4] & 7 ) + 1;
    int sample_size = hdr2samplesize[b->data[4] >> 6];

    int rate = hdr2samplerate[ ( b->data[4] >> 4 ) & 0x3 ];
    int bitrate = rate * sample_size * nchannels;
    int64_t duration = b->data[0] * 150;

    memset( info, 0, sizeof(*info) );

    info->name = "LPCM";
    info->rate = rate;
    info->rate_base = 1;
    info->bitrate = bitrate;
    info->flags = ( b->data[3] << 16 ) | ( b->data[4] << 8 ) | b->data[5];
    info->channel_layout = hdr2layout[nchannels - 1];
    info->channel_map = &hb_qt_chan_map;
    info->samples_per_frame = ( duration * rate ) / 90000;

    return 1;
}