/* reader.c Copyright (c) 2003-2016 HandBrake Team This file is part of the HandBrake source code Homepage: . It may be used under the terms of the GNU General Public License v2. For full terms see the file COPYING file or visit http://www.gnu.org/licenses/gpl-2.0.html */ #include "hb.h" static int reader_init( hb_work_object_t * w, hb_job_t * job ); static void reader_close( hb_work_object_t * w ); static int reader_work( hb_work_object_t * w, hb_buffer_t ** buf_in, hb_buffer_t ** buf_out); hb_work_object_t hb_reader = { .id = WORK_READER, .name = "Reader", .init = reader_init, .work = reader_work, .close = reader_close, .info = NULL, .bsinfo = NULL, .flush = NULL }; typedef struct { int startup; double average; // average time between packets double filtered_average; // average time between packets int64_t last; // last timestamp seen on this stream int id; // stream id int is_audio; // != 0 if this is an audio stream int valid; // Stream timing is not valid until next scr. } stream_timing_t; typedef struct { int id; hb_buffer_list_t list; } buffer_splice_list_t; struct hb_work_private_s { hb_handle_t * h; hb_job_t * job; hb_title_t * title; volatile int * die; hb_bd_t * bd; hb_dvd_t * dvd; hb_stream_t * stream; stream_timing_t *stream_timing; int64_t scr_offset; int sub_scr_set; hb_psdemux_t demux; int scr_changes; uint32_t sequence; uint8_t st_slots; // size (in slots) of stream_timing array uint8_t saw_video; // != 0 if we've seen video uint8_t saw_audio; // != 0 if we've seen audio int start_found; // found pts_to_start point int64_t pts_to_start; int chapter_end; uint64_t st_first; uint64_t duration; hb_fifo_t ** fifos; buffer_splice_list_t * splice_list; int splice_list_size; }; /*********************************************************************** * Local prototypes **********************************************************************/ static hb_fifo_t ** GetFifoForId( hb_work_private_t * r, int id ); static void UpdateState( hb_work_private_t * r, int64_t start); static hb_buffer_list_t * get_splice_list(hb_work_private_t * r, int id); /*********************************************************************** * reader_init *********************************************************************** * **********************************************************************/ static int hb_reader_open( hb_work_private_t * r ) { if ( r->title->type == HB_BD_TYPE ) { if ( !( r->bd = hb_bd_init( r->h, r->title->path ) ) ) return 1; if(!hb_bd_start(r->bd, r->title)) { hb_bd_close(&r->bd); return 1; } if (r->job->start_at_preview) { // XXX code from DecodePreviews - should go into its own routine hb_bd_seek(r->bd, (float)r->job->start_at_preview / (r->job->seek_points ? (r->job->seek_points + 1.0) : 11.0)); } else if (r->job->pts_to_start) { // Note, bd seeks always put us to an i-frame. no need // to start decoding early using r->pts_to_start hb_bd_seek_pts(r->bd, r->job->pts_to_start); r->duration -= r->job->pts_to_start; r->job->pts_to_start = 0; r->start_found = 1; } else { hb_bd_seek_chapter(r->bd, r->job->chapter_start); } if (r->job->angle > 1) { hb_bd_set_angle(r->bd, r->job->angle - 1); } } else if (r->title->type == HB_DVD_TYPE) { if ( !( r->dvd = hb_dvd_init( r->h, r->title->path ) ) ) return 1; if(!hb_dvd_start( r->dvd, r->title, r->job->chapter_start)) { hb_dvd_close(&r->dvd); return 1; } if (r->job->angle) { hb_dvd_set_angle(r->dvd, r->job->angle); } if (r->job->start_at_preview) { hb_dvd_seek(r->dvd, (float)r->job->start_at_preview / (r->job->seek_points ? (r->job->seek_points + 1.0) : 11.0)); } } else if (r->title->type == HB_STREAM_TYPE || r->title->type == HB_FF_STREAM_TYPE) { if (!(r->stream = hb_stream_open(r->h, r->title->path, r->title, 0))) return 1; if (r->job->start_at_preview) { hb_stream_seek(r->stream, (float)(r->job->start_at_preview - 1) / (r->job->seek_points ? (r->job->seek_points + 1.0) : 11.0)); } else if (r->job->pts_to_start) { if (hb_stream_seek_ts( r->stream, r->job->pts_to_start ) >= 0) { // Seek takes us to the nearest I-frame before the timestamp // that we want. So we will retrieve the start time of the // first packet we get, subtract that from pts_to_start, and // inspect the reset of the frames in sync. r->start_found = 2; r->duration -= r->job->pts_to_start; } // hb_stream_seek_ts does nothing for TS streams and will return // an error. } else { // // Standard stream, seek to the starting chapter, if set, // and track the end chapter so that we end at the right time. hb_chapter_t *chap; int start = r->job->chapter_start; chap = hb_list_item(r->job->list_chapter, r->job->chapter_end - 1); r->chapter_end = chap->index; if (start > 1) { chap = hb_list_item(r->job->list_chapter, start - 1); start = chap->index; } /* * Seek to the start chapter. */ hb_stream_seek_chapter(r->stream, start); } } else { // Unknown type, should never happen return 1; } return 0; } static int reader_init( hb_work_object_t * w, hb_job_t * job ) { hb_work_private_t * r; r = calloc( sizeof( hb_work_private_t ), 1 ); w->private_data = r; r->h = job->h; r->job = job; r->title = job->title; r->die = job->die; r->sequence = 0; r->st_slots = 4; r->stream_timing = calloc( sizeof(stream_timing_t), r->st_slots ); r->stream_timing[0].id = r->title->video_id; r->stream_timing[0].average = 90000. * (double)job->vrate.den / job->vrate.num; r->stream_timing[0].filtered_average = r->stream_timing[0].average; r->stream_timing[0].last = -r->stream_timing[0].average; r->stream_timing[0].valid = 1; r->stream_timing[0].startup = 10; r->stream_timing[1].id = -1; r->demux.last_scr = AV_NOPTS_VALUE; r->chapter_end = job->chapter_end; if ( !job->pts_to_start ) r->start_found = 1; else { // The frame at the actual start time may not be an i-frame // so can't be decoded without starting a little early. // sync.c will drop early frames. // Starting a little over 10 seconds early r->pts_to_start = MAX(0, job->pts_to_start - 1000000); } if (job->pts_to_stop) { r->duration = job->pts_to_start + job->pts_to_stop; } else if (job->frame_to_stop) { int frames = job->frame_to_start + job->frame_to_stop; r->duration = (int64_t)frames * job->title->vrate.den * 90000 / job->title->vrate.num; } else { hb_chapter_t *chapter; int ii; r->duration = 0; for (ii = job->chapter_start; ii < job->chapter_end; ii++) { chapter = hb_list_item( job->title->list_chapter, ii - 1); r->duration += chapter->duration; } } // Count number of splice lists needed for merging buffers // that have been split int count = 1; // 1 for video count += hb_list_count( job->list_subtitle ); count += hb_list_count( job->list_audio ); r->splice_list_size = count; r->splice_list = calloc(count, sizeof(buffer_splice_list_t)); // Initialize stream id's of splice lists int ii, jj = 0; r->splice_list[jj++].id = r->title->video_id; for (ii = 0; ii < hb_list_count(job->list_subtitle); ii++) { hb_subtitle_t * subtitle = hb_list_item(job->list_subtitle, ii); r->splice_list[jj++].id = subtitle->id; } for (ii = 0; ii < hb_list_count(job->list_audio); ii++) { hb_audio_t * audio = hb_list_item(job->list_audio, ii); r->splice_list[jj++].id = audio->id; } // count also happens to be the upper bound for the number of // fifos that will be needed (+1 for null terminator) r->fifos = calloc(count + 1, sizeof(hb_fifo_t*)); // The stream needs to be open before starting the reader thead // to prevent a race with decoders that may share information // with the reader. Specifically avcodec needs this. if ( hb_reader_open( r ) ) { free( r->stream_timing ); free( r ); return 1; } return 0; } static void reader_close( hb_work_object_t * w ) { hb_work_private_t * r = w->private_data; if ( r == NULL ) { return; } if (r->bd) { hb_bd_stop( r->bd ); hb_bd_close( &r->bd ); } else if (r->dvd) { hb_dvd_stop( r->dvd ); hb_dvd_close( &r->dvd ); } else if (r->stream) { hb_stream_close(&r->stream); } if ( r->stream_timing ) { free( r->stream_timing ); } free( r->fifos ); free( r ); } static hb_buffer_t * splice_discontinuity( hb_work_private_t *r, hb_buffer_t *buf ) { // Handle buffers that were split across a PCR discontinuity. // Rejoin them into a single buffer. hb_buffer_list_t * list = get_splice_list(r, buf->s.id); if (list != NULL) { hb_buffer_list_append(list, buf); if (buf->s.split) { return NULL; } int count = hb_buffer_list_count(list); if (count > 1) { int size = hb_buffer_list_size(list); hb_buffer_t * b = hb_buffer_init(size); buf = hb_buffer_list_head(list); b->s = buf->s; int pos = 0; while ((buf = hb_buffer_list_rem_head(list)) != NULL) { memcpy(b->data + pos, buf->data, buf->size); pos += buf->size; hb_buffer_close(&buf); } buf = b; } else { buf = hb_buffer_list_clear(list); } } return buf; } static void push_buf( hb_work_private_t *r, hb_fifo_t *fifo, hb_buffer_t *buf ) { while ( !*r->die && !r->job->done ) { if ( hb_fifo_full_wait( fifo ) ) { hb_fifo_push( fifo, buf ); buf = NULL; break; } } if ( buf ) { hb_buffer_close( &buf ); } } static int is_audio( hb_work_private_t *r, int id ) { int i; hb_audio_t *audio; for( i = 0; ( audio = hb_list_item( r->title->list_audio, i ) ); ++i ) { if ( audio->id == id ) { return 1; } } return 0; } static int is_subtitle( hb_work_private_t *r, int id ) { int i; hb_subtitle_t *sub; for( i = 0; ( sub = hb_list_item( r->title->list_subtitle, i ) ); ++i ) { if ( sub->id == id ) { return 1; } } return 0; } // The MPEG STD (Standard Target Decoder) essentially requires that we keep // per-stream timing so that when there's a timing discontinuity we can // seemlessly join packets on either side of the discontinuity. This join // requires that we know the timestamp of the previous packet and the // average inter-packet time (since we position the new packet at the end // of the previous packet). The next four routines keep track of this // per-stream timing. // find or create the per-stream timing state for 'buf' static stream_timing_t *id_to_st( hb_work_private_t *r, const hb_buffer_t *buf, int valid ) { stream_timing_t *st = r->stream_timing; while ( st->id != buf->s.id && st->id != -1) { ++st; } // if we haven't seen this stream add it. if ( st->id == -1 ) { // we keep the steam timing info in an array with some power-of-two // number of slots. If we don't have two slots left (one for our new // entry plus one for the "-1" eol) we need to expand the array. int slot = st - r->stream_timing; if ( slot + 1 >= r->st_slots ) { r->st_slots *= 2; r->stream_timing = realloc( r->stream_timing, r->st_slots * sizeof(*r->stream_timing) ); st = r->stream_timing + slot; } st->id = buf->s.id; st->average = 30.*90.; st->filtered_average = st->average; st->startup = 10; st->last = -st->average; if ( ( st->is_audio = is_audio( r, buf->s.id ) ) != 0 ) { r->saw_audio = 1; } st[1].id = -1; st->valid = valid; } return st; } // update the average inter-packet time of the stream associated with 'buf' // using a recursive low-pass filter with a 16 packet time constant. static void update_ipt( hb_work_private_t *r, const hb_buffer_t *buf ) { stream_timing_t *st = id_to_st( r, buf, 1 ); if (buf->s.renderOffset == AV_NOPTS_VALUE) { st->last += st->filtered_average; return; } double dt = buf->s.renderOffset - st->last; // Protect against spurious bad timestamps // timestamps should only move forward and by reasonable increments if ( dt > 0 && dt < 5 * 90000LL ) { if( st->startup ) { st->average += ( dt - st->average ) * (1./4.); st->startup--; } else { st->average += ( dt - st->average ) * (1./32.); } // Ignore outliers if (dt < 1.5 * st->average) { st->filtered_average += ( dt - st->filtered_average ) * (1./32.); } } st->last = buf->s.renderOffset; st->valid = 1; } // use the per-stream state associated with 'buf' to compute a new scr_offset // such that 'buf' will follow the previous packet of this stream separated // by the average packet time of the stream. static void new_scr_offset( hb_work_private_t *r, hb_buffer_t *buf ) { stream_timing_t *st = id_to_st( r, buf, 1 ); int64_t last; if ( !st->valid ) { // !valid means we've not received any previous data // for this stream. There is no 'last' packet time. // So approximate it with video's last time. last = r->stream_timing[0].last; st->valid = 1; } else { last = st->last; } int64_t nxt = last + st->filtered_average; r->scr_offset = buf->s.renderOffset - nxt; // This log is handy when you need to debug timing problems... //hb_log("id %x last %"PRId64" avg %g nxt %"PRId64" renderOffset %"PRId64 // " scr_offset %"PRId64"", // buf->s.id, last, st->filtered_average, nxt, // buf->s.renderOffset, r->scr_offset); r->scr_changes = r->demux.scr_changes; } static void reader_send_eof( hb_work_private_t * r ) { int ii; // send eof buffers downstream to decoders to signal we're done. push_buf(r, r->job->fifo_mpeg2, hb_buffer_eof_init()); hb_audio_t *audio; for (ii = 0; (audio = hb_list_item(r->job->list_audio, ii)); ++ii) { if (audio->priv.fifo_in) push_buf(r, audio->priv.fifo_in, hb_buffer_eof_init()); } hb_subtitle_t *subtitle; for (ii = 0; (subtitle = hb_list_item(r->job->list_subtitle, ii)); ++ii) { if (subtitle->fifo_in && subtitle->source != SRTSUB) push_buf(r, subtitle->fifo_in, hb_buffer_eof_init()); } hb_log("reader: done. %d scr changes", r->demux.scr_changes); } static int reader_work( hb_work_object_t * w, hb_buffer_t ** buf_in, hb_buffer_t ** buf_out) { hb_work_private_t * r = w->private_data; hb_fifo_t ** fifos; hb_buffer_t * buf; hb_buffer_list_t list; int ii, chapter = -1; hb_buffer_list_clear(&list); if (r->bd) chapter = hb_bd_chapter( r->bd ); else if (r->dvd) chapter = hb_dvd_chapter( r->dvd ); else if (r->stream) chapter = hb_stream_chapter( r->stream ); if( chapter < 0 ) { hb_log( "reader: end of the title reached" ); reader_send_eof(r); return HB_WORK_DONE; } if( chapter > r->chapter_end ) { hb_log("reader: end of chapter %d (media %d) reached at media chapter %d", r->job->chapter_end, r->chapter_end, chapter); reader_send_eof(r); return HB_WORK_DONE; } if (r->bd) { if( (buf = hb_bd_read( r->bd )) == NULL ) { reader_send_eof(r); return HB_WORK_DONE; } } else if (r->dvd) { if( (buf = hb_dvd_read( r->dvd )) == NULL ) { reader_send_eof(r); return HB_WORK_DONE; } } else if (r->stream) { if ( (buf = hb_stream_read( r->stream )) == NULL ) { reader_send_eof(r); return HB_WORK_DONE; } } (hb_demux[r->title->demuxer])(buf, &list, &r->demux); while ((buf = hb_buffer_list_rem_head(&list)) != NULL) { fifos = GetFifoForId( r, buf->s.id ); if (fifos && r->stream && r->start_found == 2 ) { // We will inspect the timestamps of each frame in sync // to skip from this seek point to the timestamp we // want to start at. if (buf->s.start != AV_NOPTS_VALUE && buf->s.start < r->job->pts_to_start) { r->job->pts_to_start -= buf->s.start; } else if ( buf->s.start >= r->job->pts_to_start ) { r->job->pts_to_start = 0; } r->start_found = 1; } if ( fifos && ! r->saw_video && !r->job->indepth_scan ) { // The first data packet with a PTS from an audio or video stream // that we're decoding defines 'time zero'. Discard packets until // we get one. if (buf->s.start != AV_NOPTS_VALUE && buf->s.renderOffset != AV_NOPTS_VALUE && (buf->s.id == r->title->video_id || is_audio( r, buf->s.id))) { // force a new scr offset computation r->scr_changes = r->demux.scr_changes - 1; // create a stream state if we don't have one so the // offset will get computed correctly. id_to_st( r, buf, 1 ); r->saw_video = 1; hb_log( "reader: first SCR %"PRId64" id 0x%x DTS %"PRId64, r->demux.last_scr, buf->s.id, buf->s.renderOffset ); } else { fifos = NULL; } } if ( r->job->indepth_scan || fifos ) { if ( buf->s.renderOffset != AV_NOPTS_VALUE ) { if ( r->scr_changes != r->demux.scr_changes ) { // This is the first audio or video packet after an SCR // change. Compute a new scr offset that would make this // packet follow the last of this stream with the // correct average spacing. stream_timing_t *st = id_to_st( r, buf, 0 ); // if this is the video stream and we don't have // audio yet or this is an audio stream // generate a new scr if ( st->is_audio || ( st == r->stream_timing && !r->saw_audio ) ) { new_scr_offset( r, buf ); r->sub_scr_set = 0; } else { // defer the scr change until we get some // audio since audio has a timestamp per // frame but video & subtitles don't. Clear // the timestamps so the decoder will generate // them from the frame durations. if (is_subtitle(r, buf->s.id) && buf->s.start != AV_NOPTS_VALUE) { if (!r->sub_scr_set) { // We can't generate timestamps in the // subtitle decoder as we can for // audio & video. So we need to make // the closest guess that we can // for the subtitles start time here. int64_t last = r->stream_timing[0].last; r->scr_offset = buf->s.start - last; r->sub_scr_set = 1; } } else { buf->s.start = AV_NOPTS_VALUE; buf->s.renderOffset = AV_NOPTS_VALUE; } } } } if ( buf->s.start != AV_NOPTS_VALUE ) { int64_t start = buf->s.start - r->scr_offset; if (!r->start_found || r->job->indepth_scan) { UpdateState( r, start ); } if (r->job->indepth_scan && r->job->pts_to_stop && start >= r->pts_to_start + r->job->pts_to_stop) { // sync normally would terminate p-to-p // but sync doesn't run during indepth scan hb_log("reader: reached pts %"PRId64", exiting early", start); reader_send_eof(r); hb_buffer_list_close(&list); return HB_WORK_DONE; } if (!r->start_found && start >= r->pts_to_start) { // pts_to_start point found r->start_found = 1; if (r->stream) { // libav multi-threaded decoders can get into // a bad state if the initial data is not // decodable. So try to improve the chances of // a good start by waiting for an initial iframe hb_stream_set_need_keyframe(r->stream, 1); hb_buffer_close( &buf ); continue; } } // This log is handy when you need to debug timing problems //hb_log("id %x scr_offset %"PRId64 // " start %"PRId64" --> %"PRId64"", // buf->s.id, r->scr_offset, buf->s.start, // buf->s.start - r->scr_offset); buf->s.start -= r->scr_offset; if ( buf->s.stop != AV_NOPTS_VALUE ) { buf->s.stop -= r->scr_offset; } } if ( buf->s.renderOffset != AV_NOPTS_VALUE ) { // This packet is referenced to the same SCR as the last. // Adjust timestamp to remove the System Clock Reference // offset then update the average inter-packet time // for this stream. buf->s.renderOffset -= r->scr_offset; update_ipt( r, buf ); } #if 0 // JAS: This was added to fix a rare "audio time went backward" // sync error I found in one sample. But it has a bad side // effect on DVDs, causing frequent "adding silence" sync // errors. So I am disabling it. else { update_ipt( r, buf ); } #endif } buf = splice_discontinuity(r, buf); if( fifos && buf != NULL ) { if ( !r->start_found ) { hb_buffer_close( &buf ); continue; } buf->sequence = r->sequence++; /* if there are mutiple output fifos, send a copy of the * buffer down all but the first (we have to not ship the * original buffer or we'll race with the thread that's * consuming the buffer & inject garbage into the data stream). */ for (ii = 1; fifos[ii] != NULL; ii++) { hb_buffer_t *buf_copy = hb_buffer_init(buf->size); buf_copy->s = buf->s; memcpy(buf_copy->data, buf->data, buf->size); push_buf(r, fifos[ii], buf_copy); } push_buf(r, fifos[0], buf); buf = NULL; } else { hb_buffer_close(&buf); } } hb_buffer_list_close(&list); return HB_WORK_OK; } static void UpdateState( hb_work_private_t * r, int64_t start) { hb_state_t state; uint64_t now; double avg; now = hb_get_date(); if( !r->st_first ) { r->st_first = now; } hb_get_state2(r->job->h, &state); #define p state.param.working if ( !r->job->indepth_scan ) { state.state = HB_STATE_SEARCHING; p.progress = (float) start / (float) r->job->pts_to_start; } else { state.state = HB_STATE_WORKING; p.progress = (float) start / (float) r->duration; } if( p.progress > 1.0 ) { p.progress = 1.0; } p.rate_cur = 0.0; p.rate_avg = 0.0; if (now > r->st_first) { int eta; avg = 1000.0 * (double)start / (now - r->st_first); if ( !r->job->indepth_scan ) eta = ( r->job->pts_to_start - start ) / avg; else eta = ( r->duration - start ) / avg; p.hours = eta / 3600; p.minutes = ( eta % 3600 ) / 60; p.seconds = eta % 60; } else { p.hours = -1; p.minutes = -1; p.seconds = -1; } #undef p hb_set_state( r->job->h, &state ); } /*********************************************************************** * GetFifoForId *********************************************************************** * **********************************************************************/ static hb_fifo_t ** GetFifoForId( hb_work_private_t * r, int id ) { hb_job_t * job = r->job; hb_title_t * title = job->title; hb_audio_t * audio; hb_subtitle_t * subtitle; int i, n; if( id == title->video_id ) { if (job->indepth_scan && !job->frame_to_stop) { /* * Ditch the video here during the indepth scan until * we can improve the MPEG2 decode performance. * * But if we specify a stop frame, we must decode the * frames in order to count them. */ return NULL; } else { r->fifos[0] = job->fifo_mpeg2; r->fifos[1] = NULL; return r->fifos; } } for( i = n = 0; i < hb_list_count( job->list_subtitle ); i++ ) { subtitle = hb_list_item( job->list_subtitle, i ); if (id == subtitle->id) { /* pass the subtitles to be processed */ r->fifos[n++] = subtitle->fifo_in; } } if ( n != 0 ) { r->fifos[n] = NULL; return r->fifos; } if( !job->indepth_scan ) { for( i = n = 0; i < hb_list_count( job->list_audio ); i++ ) { audio = hb_list_item( job->list_audio, i ); if( id == audio->id ) { r->fifos[n++] = audio->priv.fifo_in; } } if( n != 0 ) { r->fifos[n] = NULL; return r->fifos; } } return NULL; } static hb_buffer_list_t * get_splice_list(hb_work_private_t * r, int id) { int ii; for (ii = 0; ii < r->splice_list_size; ii++) { if (r->splice_list[ii].id == id) { return &r->splice_list[ii].list; } } return NULL; }