/* fifo.c Copyright (c) 2003-2015 HandBrake Team This file is part of the HandBrake source code Homepage: . It may be used under the terms of the GNU General Public License v2. For full terms see the file COPYING file or visit http://www.gnu.org/licenses/gpl-2.0.html */ #include "hb.h" #include "openclwrapper.h" #ifndef SYS_DARWIN #include #endif #define FIFO_TIMEOUT 200 //#define HB_FIFO_DEBUG 1 //#define HB_BUFFER_DEBUG 1 /* Fifo */ struct hb_fifo_s { hb_lock_t * lock; hb_cond_t * cond_full; int wait_full; hb_cond_t * cond_empty; int wait_empty; hb_cond_t * cond_alert_full; uint32_t capacity; uint32_t thresh; uint32_t size; uint32_t buffer_size; hb_buffer_t * first; hb_buffer_t * last; #if defined(HB_FIFO_DEBUG) // Fifo list for debugging hb_fifo_t * next; #endif }; #if defined(HB_FIFO_DEBUG) static hb_fifo_t fifo_list = { .next = NULL }; #endif /* we round the requested buffer size up to the next power of 2 so there can * be at most 32 possible pools when the size is a 32 bit int. To avoid a lot * of slow & error-prone run-time checking we allow for all 32. */ #define MAX_BUFFER_POOLS 32 #define BUFFER_POOL_FIRST 10 #define BUFFER_POOL_LAST 25 /* the buffer pool only exists to avoid the two malloc and two free calls that * it would otherwise take to allocate & free a buffer. but we don't want to * tie up a lot of memory in the pool because this allocator isn't as general * as malloc so memory tied up here puts more pressure on the malloc pool. * A pool of 16 elements will avoid 94% of the malloc/free calls without wasting * too much memory. */ #define BUFFER_POOL_MAX_ELEMENTS 32 struct hb_buffer_pools_s { int64_t allocated; hb_lock_t *lock; hb_fifo_t *pool[MAX_BUFFER_POOLS]; #if defined(HB_BUFFER_DEBUG) hb_list_t *alloc_list; #endif } buffers; void hb_buffer_pool_init( void ) { buffers.lock = hb_lock_init(); buffers.allocated = 0; #if defined(HB_BUFFER_DEBUG) buffers.alloc_list = hb_list_init(); #endif /* we allocate pools for sizes 2^10 through 2^25. requests larger than * 2^25 will get passed through to malloc. */ int i; // Create larger queue for 2^10 bucket since all allocations smaller than // 2^10 come from here. buffers.pool[BUFFER_POOL_FIRST] = hb_fifo_init(BUFFER_POOL_MAX_ELEMENTS*10, 1); buffers.pool[BUFFER_POOL_FIRST]->buffer_size = 1 << 10; /* requests smaller than 2^10 are satisfied from the 2^10 pool. */ for ( i = 1; i < BUFFER_POOL_FIRST; ++i ) { buffers.pool[i] = buffers.pool[BUFFER_POOL_FIRST]; } for ( i = BUFFER_POOL_FIRST + 1; i <= BUFFER_POOL_LAST; ++i ) { buffers.pool[i] = hb_fifo_init(BUFFER_POOL_MAX_ELEMENTS, 1); buffers.pool[i]->buffer_size = 1 << i; } } #if defined(HB_FIFO_DEBUG) static void dump_fifo(hb_fifo_t * f) { hb_buffer_t * b = f->first; if (b) { while (b) { fprintf(stderr, "%p:%d:%d\n", b, b->size, b->alloc); b = b->next; } fprintf(stderr, "\n"); } } static void fifo_list_add( hb_fifo_t * f ) { hb_fifo_t *next = fifo_list.next; fifo_list.next = f; f->next = next; } static void fifo_list_rem( hb_fifo_t * f ) { hb_fifo_t *next, *prev; prev = &fifo_list; next = fifo_list.next; while ( next && next != f ) { prev = next; next = next->next; } if ( next == f ) { prev->next = f->next; } } // These routines are useful for finding and debugging problems // with the fifos and buffer pools static void buffer_pool_validate( hb_fifo_t * f ) { hb_buffer_t *b; hb_lock( f->lock ); b = f->first; while (b) { if (b->alloc != f->buffer_size) { fprintf(stderr, "Invalid buffer pool size! buf %p size %d pool size %d\n", b, b->alloc, f->buffer_size); dump_fifo( f ); *(char*)0 = 1; } b = b->next; } hb_unlock( f->lock ); } static void buffer_pools_validate( void ) { int ii; for ( ii = BUFFER_POOL_FIRST; ii <= BUFFER_POOL_LAST; ++ii ) { buffer_pool_validate( buffers.pool[ii] ); } } void fifo_list_validate( void ) { hb_fifo_t *next = fifo_list.next; hb_fifo_t *m; hb_buffer_t *b, *c; int count; buffer_pools_validate(); while ( next ) { count = 0; hb_lock( next->lock ); b = next->first; // Count the number of entries in this fifo while (b) { c = b->next; // check that the current buffer is not duplicated in this fifo while (c) { if (c == b) { fprintf(stderr, "Duplicate buffer in fifo!\n"); dump_fifo(next); *(char*)0 = 1; } c = c->next; } // check that the current buffer is not duplicated in another fifo m = next->next; while (m) { hb_lock( m->lock ); c = m->first; while (c) { if (c == b) { fprintf(stderr, "Duplicate buffer in another fifo!\n"); dump_fifo(next); *(char*)0 = 1; } c = c->next; } hb_unlock( m->lock ); m = m->next; } count++; b = b->next; } if ( count != next->size ) { fprintf(stderr, "Invalid fifo size! count %d size %d\n", count, next->size); dump_fifo(next); *(char*)0 = 1; } hb_unlock( next->lock ); next = next->next; } } #endif void hb_buffer_pool_free( void ) { int i; int count; int64_t freed = 0; hb_buffer_t *b; hb_lock(buffers.lock); #if defined(HB_BUFFER_DEBUG) hb_deep_log(2, "leaked %d buffers", hb_list_count(buffers.alloc_list)); for (i = 0; i < hb_list_count(buffers.alloc_list); i++) { hb_buffer_t *b = hb_list_item(buffers.alloc_list, i); hb_deep_log(2, "leaked buffer %p type %d size %d alloc %d", b, b->s.type, b->size, b->alloc); } #endif for( i = BUFFER_POOL_FIRST; i <= BUFFER_POOL_LAST; ++i) { count = 0; while( ( b = hb_fifo_get(buffers.pool[i]) ) ) { if( b->data ) { freed += b->alloc; if (b->cl.buffer != NULL) { /* OpenCL */ if (hb_cl_free_mapped_buffer(b->cl.buffer, b->data) == 0) { hb_log("hb_buffer_pool_free: bad free: %p -> buffer %p map %p", b, b->cl.buffer, b->data); } } else { free(b->data); } } free( b ); count++; } if ( count ) { hb_deep_log( 2, "Freed %d buffers of size %d", count, buffers.pool[i]->buffer_size); } } hb_deep_log( 2, "Allocated %"PRId64" bytes of buffers on this pass and Freed %"PRId64" bytes, " "%"PRId64" bytes leaked", buffers.allocated, freed, buffers.allocated - freed); buffers.allocated = 0; hb_unlock(buffers.lock); } static hb_fifo_t *size_to_pool( int size ) { int i; for ( i = BUFFER_POOL_FIRST; i <= BUFFER_POOL_LAST; ++i ) { if ( size <= (1 << i) ) { return buffers.pool[i]; } } return NULL; } hb_buffer_t * hb_buffer_init_internal( int size , int needsMapped ) { hb_buffer_t * b; // Certain libraries (hrm ffmpeg) expect buffers passed to them to // end on certain alignments (ffmpeg is 8). So allocate some extra bytes. // Note that we can't simply align the end of our buffer because // sometimes we feed data to these libraries starting from arbitrary // points within the buffer. int alloc = size + 16; hb_fifo_t *buffer_pool = size_to_pool( alloc ); if( buffer_pool ) { b = hb_fifo_get( buffer_pool ); /* OpenCL */ if (b != NULL && needsMapped && b->cl.buffer == NULL) { // We need a mapped OpenCL buffer and that is not // what we got out of the pool. // Ditch it; it will get replaced with what we need. if (b->data != NULL) { free(b->data); } free(b); b = NULL; } if( b ) { /* * Zero the contents of the buffer, would be nice if we * didn't have to do this. */ uint8_t *data = b->data; /* OpenCL */ cl_mem buffer = b->cl.buffer; cl_event last_event = b->cl.last_event; int loc = b->cl.buffer_location; memset( b, 0, sizeof(hb_buffer_t) ); b->alloc = buffer_pool->buffer_size; b->size = size; b->data = data; b->s.start = AV_NOPTS_VALUE; b->s.stop = AV_NOPTS_VALUE; b->s.renderOffset = AV_NOPTS_VALUE; /* OpenCL */ b->cl.buffer = buffer; b->cl.last_event = last_event; b->cl.buffer_location = loc; #if defined(HB_BUFFER_DEBUG) hb_lock(buffers.lock); hb_list_add(buffers.alloc_list, b); hb_unlock(buffers.lock); #endif return( b ); } } /* * No existing buffers, create a new one */ if( !( b = calloc( sizeof( hb_buffer_t ), 1 ) ) ) { hb_log( "out of memory" ); return NULL; } b->size = size; b->alloc = buffer_pool ? buffer_pool->buffer_size : alloc; if (size) { /* OpenCL */ b->cl.last_event = NULL; b->cl.buffer_location = HOST; /* OpenCL */ if (needsMapped) { int status = hb_cl_create_mapped_buffer(&b->cl.buffer, &b->data, b->alloc); if (!status) { hb_error("Failed to map CL buffer"); free(b); return NULL; } } else { b->cl.buffer = NULL; #if defined( SYS_DARWIN ) || defined( SYS_FREEBSD ) || defined( SYS_MINGW ) b->data = malloc( b->alloc ); #elif defined( SYS_CYGWIN ) /* FIXME */ b->data = malloc( b->alloc + 17 ); #else b->data = memalign( 16, b->alloc ); #endif } if( !b->data ) { hb_log( "out of memory" ); free( b ); return NULL; } hb_lock(buffers.lock); buffers.allocated += b->alloc; hb_unlock(buffers.lock); } b->s.start = AV_NOPTS_VALUE; b->s.stop = AV_NOPTS_VALUE; b->s.renderOffset = AV_NOPTS_VALUE; #if defined(HB_BUFFER_DEBUG) hb_lock(buffers.lock); hb_list_add(buffers.alloc_list, b); hb_unlock(buffers.lock); #endif return b; } hb_buffer_t * hb_buffer_init( int size ) { return hb_buffer_init_internal(size, 0); } void hb_buffer_realloc( hb_buffer_t * b, int size ) { if ( size > b->alloc || b->data == NULL ) { uint32_t orig = b->data != NULL ? b->alloc : 0; size = size_to_pool( size )->buffer_size; b->data = realloc( b->data, size ); b->alloc = size; hb_lock(buffers.lock); buffers.allocated += size - orig; hb_unlock(buffers.lock); } } void hb_buffer_reduce( hb_buffer_t * b, int size ) { if ( size < b->alloc / 8 || b->data == NULL ) { hb_buffer_t * tmp = hb_buffer_init( size ); hb_buffer_swap_copy( b, tmp ); memcpy( b->data, tmp->data, size ); tmp->next = NULL; hb_buffer_close( &tmp ); } } hb_buffer_t * hb_buffer_dup( const hb_buffer_t * src ) { hb_buffer_t * buf; if ( src == NULL ) return NULL; buf = hb_buffer_init( src->size ); if ( buf ) { memcpy( buf->data, src->data, src->size ); buf->s = src->s; buf->f = src->f; if ( buf->s.type == FRAME_BUF ) hb_buffer_init_planes( buf ); } #ifdef USE_QSV memcpy(&buf->qsv_details, &src->qsv_details, sizeof(src->qsv_details)); #endif return buf; } int hb_buffer_copy(hb_buffer_t * dst, const hb_buffer_t * src) { if (src == NULL || dst == NULL) return -1; if ( dst->size < src->size ) return -1; memcpy( dst->data, src->data, src->size ); dst->s = src->s; dst->f = src->f; if (dst->s.type == FRAME_BUF) hb_buffer_init_planes(dst); return 0; } static void hb_buffer_init_planes_internal( hb_buffer_t * b, uint8_t * has_plane ) { uint8_t * plane = b->data; int p; for( p = 0; p < 4; p++ ) { if ( has_plane[p] ) { b->plane[p].data = plane; b->plane[p].stride = hb_image_stride( b->f.fmt, b->f.width, p ); b->plane[p].height_stride = hb_image_height_stride( b->f.fmt, b->f.height, p ); b->plane[p].width = hb_image_width( b->f.fmt, b->f.width, p ); b->plane[p].height = hb_image_height( b->f.fmt, b->f.height, p ); b->plane[p].size = b->plane[p].stride * b->plane[p].height_stride; plane += b->plane[p].size; } } } void hb_buffer_init_planes( hb_buffer_t * b ) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(b->f.fmt); int p; if (desc == NULL) { return; } uint8_t has_plane[4] = {0,}; for( p = 0; p < 4; p++ ) { has_plane[desc->comp[p].plane] = 1; } hb_buffer_init_planes_internal( b, has_plane ); } // this routine gets a buffer for an uncompressed picture // with pixel format pix_fmt and dimensions width x height. hb_buffer_t * hb_frame_buffer_init( int pix_fmt, int width, int height ) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); hb_buffer_t * buf; int p; uint8_t has_plane[4] = {0,}; if (desc == NULL) { return NULL; } for( p = 0; p < 4; p++ ) { has_plane[desc->comp[p].plane] = 1; } int size = 0; for( p = 0; p < 4; p++ ) { if ( has_plane[p] ) { size += hb_image_stride( pix_fmt, width, p ) * hb_image_height_stride( pix_fmt, height, p ); } } /* OpenCL */ buf = hb_buffer_init_internal(size , hb_use_buffers()); if( buf == NULL ) return NULL; buf->s.type = FRAME_BUF; buf->f.width = width; buf->f.height = height; buf->f.fmt = pix_fmt; hb_buffer_init_planes_internal( buf, has_plane ); return buf; } // this routine reallocs a buffer for an uncompressed YUV420 video frame // with dimensions width x height. void hb_video_buffer_realloc( hb_buffer_t * buf, int width, int height ) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(buf->f.fmt); int p; uint8_t has_plane[4] = {0,}; if (desc == NULL) { return; } for( p = 0; p < 4; p++ ) { has_plane[desc->comp[p].plane] = 1; } int size = 0; for( p = 0; p < 4; p++ ) { if ( has_plane[p] ) { size += hb_image_stride( buf->f.fmt, width, p ) * hb_image_height_stride( buf->f.fmt, height, p ); } } hb_buffer_realloc(buf, size ); buf->f.width = width; buf->f.height = height; buf->size = size; hb_buffer_init_planes_internal( buf, has_plane ); } // this routine 'moves' data from src to dst by interchanging 'data', // 'size' & 'alloc' between them and copying the rest of the fields // from src to dst. void hb_buffer_swap_copy( hb_buffer_t *src, hb_buffer_t *dst ) { uint8_t *data = dst->data; int size = dst->size; int alloc = dst->alloc; /* OpenCL */ cl_mem buffer = dst->cl.buffer; cl_event last_event = dst->cl.last_event; int loc = dst->cl.buffer_location; *dst = *src; src->data = data; src->size = size; src->alloc = alloc; /* OpenCL */ src->cl.buffer = buffer; src->cl.last_event = last_event; src->cl.buffer_location = loc; } // Frees the specified buffer list. void hb_buffer_close( hb_buffer_t ** _b ) { hb_buffer_t * b = *_b; while( b ) { hb_buffer_t * next = b->next; hb_fifo_t *buffer_pool = size_to_pool( b->alloc ); b->next = NULL; #if defined(HB_BUFFER_DEBUG) hb_lock(buffers.lock); hb_list_rem(buffers.alloc_list, b); hb_unlock(buffers.lock); #endif // Close any attached subtitle buffers hb_buffer_close( &b->sub ); if( buffer_pool && b->data && !hb_fifo_is_full( buffer_pool ) ) { hb_fifo_push_head( buffer_pool, b ); b = next; continue; } // either the pool is full or this size doesn't use a pool // free the buf if( b->data ) { if (b->cl.buffer != NULL) { /* OpenCL */ if (hb_cl_free_mapped_buffer(b->cl.buffer, b->data) == 0) { hb_log("hb_buffer_pool_free: bad free %p -> buffer %p map %p", b, b->cl.buffer, b->data); } } else { free(b->data); } hb_lock(buffers.lock); buffers.allocated -= b->alloc; hb_unlock(buffers.lock); } free( b ); b = next; } *_b = NULL; } void hb_buffer_move_subs( hb_buffer_t * dst, hb_buffer_t * src ) { // Note that dst takes ownership of the subtitles dst->sub = src->sub; src->sub = NULL; #ifdef USE_QSV memcpy(&dst->qsv_details, &src->qsv_details, sizeof(src->qsv_details)); #endif } hb_image_t * hb_image_init(int pix_fmt, int width, int height) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); int p; uint8_t has_plane[4] = {0,}; if (desc == NULL) { return NULL; } for (p = 0; p < 4; p++) { has_plane[desc->comp[p].plane] = 1; } int size = 0; for (p = 0; p < 4; p++) { if (has_plane[p]) { size += hb_image_stride( pix_fmt, width, p ) * hb_image_height_stride( pix_fmt, height, p ); } } hb_image_t *image = calloc(1, sizeof(hb_image_t)); if (image == NULL) { return NULL; } #if defined( SYS_DARWIN ) || defined( SYS_FREEBSD ) || defined( SYS_MINGW ) image->data = malloc(size); #elif defined( SYS_CYGWIN ) /* FIXME */ image->data = malloc(size + 17); #else image->data = memalign(16, size); #endif if (image->data == NULL) { free(image); return NULL; } image->format = pix_fmt; image->width = width; image->height = height; memset(image->data, 0, size); uint8_t * plane = image->data; for (p = 0; p < 4; p++) { if (has_plane[p]) { image->plane[p].data = plane; image->plane[p].stride = hb_image_stride(pix_fmt, width, p ); image->plane[p].height_stride = hb_image_height_stride(pix_fmt, height, p ); image->plane[p].width = hb_image_width(pix_fmt, width, p ); image->plane[p].height = hb_image_height(pix_fmt, height, p ); image->plane[p].size = image->plane[p].stride * image->plane[p].height_stride; plane += image->plane[p].size; } } return image; } hb_image_t * hb_buffer_to_image(hb_buffer_t *buf) { hb_image_t *image = calloc(1, sizeof(hb_image_t)); #if defined( SYS_DARWIN ) || defined( SYS_FREEBSD ) || defined( SYS_MINGW ) image->data = malloc( buf->size ); #elif defined( SYS_CYGWIN ) /* FIXME */ image->data = malloc( buf->size + 17 ); #else image->data = memalign( 16, buf->size ); #endif if (image->data == NULL) { free(image); return NULL; } image->format = buf->f.fmt; image->width = buf->f.width; image->height = buf->f.height; memcpy(image->data, buf->data, buf->size); int p; uint8_t *data = image->data; for (p = 0; p < 4; p++) { image->plane[p].data = data; image->plane[p].width = buf->plane[p].width; image->plane[p].height = buf->plane[p].height; image->plane[p].stride = buf->plane[p].stride; image->plane[p].height_stride = buf->plane[p].height_stride; image->plane[p].size = buf->plane[p].size; data += image->plane[p].size; } return image; } void hb_image_close(hb_image_t **_image) { if (_image == NULL) return; hb_image_t * image = *_image; if (image != NULL) { free(image->data); free(image); *_image = NULL; } } hb_fifo_t * hb_fifo_init( int capacity, int thresh ) { hb_fifo_t * f; f = calloc( sizeof( hb_fifo_t ), 1 ); f->lock = hb_lock_init(); f->cond_full = hb_cond_init(); f->cond_empty = hb_cond_init(); f->capacity = capacity; f->thresh = thresh; f->buffer_size = 0; #if defined(HB_FIFO_DEBUG) // Add the fifo to the global fifo list fifo_list_add( f ); #endif return f; } void hb_fifo_register_full_cond( hb_fifo_t * f, hb_cond_t * c ) { f->cond_alert_full = c; } int hb_fifo_size_bytes( hb_fifo_t * f ) { int ret = 0; hb_buffer_t * link; hb_lock( f->lock ); link = f->first; while ( link ) { ret += link->size; link = link->next; } hb_unlock( f->lock ); return ret; } int hb_fifo_size( hb_fifo_t * f ) { int ret; hb_lock( f->lock ); ret = f->size; hb_unlock( f->lock ); return ret; } int hb_fifo_is_full( hb_fifo_t * f ) { int ret; hb_lock( f->lock ); ret = ( f->size >= f->capacity ); hb_unlock( f->lock ); return ret; } float hb_fifo_percent_full( hb_fifo_t * f ) { float ret; hb_lock( f->lock ); ret = f->size / f->capacity; hb_unlock( f->lock ); return ret; } // Pulls the first packet out of this FIFO, blocking until such a packet is available. // Returns NULL if this FIFO has been closed or flushed. hb_buffer_t * hb_fifo_get_wait( hb_fifo_t * f ) { hb_buffer_t * b; hb_lock( f->lock ); if( f->size < 1 ) { f->wait_empty = 1; hb_cond_timedwait( f->cond_empty, f->lock, FIFO_TIMEOUT ); if( f->size < 1 ) { hb_unlock( f->lock ); return NULL; } } b = f->first; f->first = b->next; b->next = NULL; f->size -= 1; if( f->wait_full && f->size == f->capacity - f->thresh ) { f->wait_full = 0; hb_cond_signal( f->cond_full ); } hb_unlock( f->lock ); return b; } // Pulls a packet out of this FIFO, or returns NULL if no packet is available. hb_buffer_t * hb_fifo_get( hb_fifo_t * f ) { hb_buffer_t * b; hb_lock( f->lock ); if( f->size < 1 ) { hb_unlock( f->lock ); return NULL; } b = f->first; f->first = b->next; b->next = NULL; f->size -= 1; if( f->wait_full && f->size == f->capacity - f->thresh ) { f->wait_full = 0; hb_cond_signal( f->cond_full ); } hb_unlock( f->lock ); return b; } hb_buffer_t * hb_fifo_see_wait( hb_fifo_t * f ) { hb_buffer_t * b; hb_lock( f->lock ); if( f->size < 1 ) { f->wait_empty = 1; hb_cond_timedwait( f->cond_empty, f->lock, FIFO_TIMEOUT ); if( f->size < 1 ) { hb_unlock( f->lock ); return NULL; } } b = f->first; hb_unlock( f->lock ); return b; } // Returns the first packet in the specified FIFO. // If the FIFO is empty, returns NULL. hb_buffer_t * hb_fifo_see( hb_fifo_t * f ) { hb_buffer_t * b; hb_lock( f->lock ); if( f->size < 1 ) { hb_unlock( f->lock ); return NULL; } b = f->first; hb_unlock( f->lock ); return b; } hb_buffer_t * hb_fifo_see2( hb_fifo_t * f ) { hb_buffer_t * b; hb_lock( f->lock ); if( f->size < 2 ) { hb_unlock( f->lock ); return NULL; } b = f->first->next; hb_unlock( f->lock ); return b; } // Waits until the specified FIFO is no longer full or until FIFO_TIMEOUT milliseconds have elapsed. // Returns whether the FIFO is non-full upon return. int hb_fifo_full_wait( hb_fifo_t * f ) { int result; hb_lock( f->lock ); if( f->size >= f->capacity ) { f->wait_full = 1; hb_cond_timedwait( f->cond_full, f->lock, FIFO_TIMEOUT ); } result = ( f->size < f->capacity ); hb_unlock( f->lock ); return result; } // Pushes the specified buffer onto the specified FIFO, // blocking until the FIFO has space available. void hb_fifo_push_wait( hb_fifo_t * f, hb_buffer_t * b ) { if( !b ) { return; } hb_lock( f->lock ); if( f->size >= f->capacity ) { f->wait_full = 1; if (f->cond_alert_full != NULL) hb_cond_broadcast( f->cond_alert_full ); hb_cond_timedwait( f->cond_full, f->lock, FIFO_TIMEOUT ); } if( f->size > 0 ) { f->last->next = b; } else { f->first = b; } f->last = b; f->size += 1; while( f->last->next ) { f->size += 1; f->last = f->last->next; } if( f->wait_empty && f->size >= 1 ) { f->wait_empty = 0; hb_cond_signal( f->cond_empty ); } hb_unlock( f->lock ); } // Appends the specified packet list to the end of the specified FIFO. void hb_fifo_push( hb_fifo_t * f, hb_buffer_t * b ) { if( !b ) { return; } hb_lock( f->lock ); if (f->size >= f->capacity && f->cond_alert_full != NULL) { hb_cond_broadcast( f->cond_alert_full ); } if( f->size > 0 ) { f->last->next = b; } else { f->first = b; } f->last = b; f->size += 1; while( f->last->next ) { f->size += 1; f->last = f->last->next; } if( f->wait_empty && f->size >= 1 ) { f->wait_empty = 0; hb_cond_signal( f->cond_empty ); } hb_unlock( f->lock ); } // Prepends the specified packet list to the start of the specified FIFO. void hb_fifo_push_head( hb_fifo_t * f, hb_buffer_t * b ) { hb_buffer_t * tmp; uint32_t size = 0; if( !b ) { return; } hb_lock( f->lock ); if (f->size >= f->capacity && f->cond_alert_full != NULL) { hb_cond_broadcast( f->cond_alert_full ); } /* * If there are a chain of buffers prepend the lot */ tmp = b; while( tmp->next ) { tmp = tmp->next; size += 1; } if( f->size > 0 ) { tmp->next = f->first; } else { f->last = tmp; } f->first = b; f->size += ( size + 1 ); hb_unlock( f->lock ); } // Pushes a list of packets onto the specified FIFO as a single element. void hb_fifo_push_list_element( hb_fifo_t *fifo, hb_buffer_t *buffer_list ) { hb_buffer_t *container = hb_buffer_init( 0 ); // XXX: Using an arbitrary hb_buffer_t pointer (other than 'next') // to carry the list inside a single "container" buffer container->sub = buffer_list; hb_fifo_push( fifo, container ); } // Removes a list of packets from the specified FIFO that were stored as a single element. hb_buffer_t *hb_fifo_get_list_element( hb_fifo_t *fifo ) { hb_buffer_t *container = hb_fifo_get( fifo ); // XXX: Using an arbitrary hb_buffer_t pointer (other than 'next') // to carry the list inside a single "container" buffer hb_buffer_t *buffer_list = container->sub; hb_buffer_close( &container ); return buffer_list; } void hb_fifo_close( hb_fifo_t ** _f ) { hb_fifo_t * f = *_f; hb_buffer_t * b; if ( f == NULL ) return; hb_deep_log( 2, "fifo_close: trashing %d buffer(s)", hb_fifo_size( f ) ); while( ( b = hb_fifo_get( f ) ) ) { hb_buffer_close( &b ); } hb_lock_close( &f->lock ); hb_cond_close( &f->cond_empty ); hb_cond_close( &f->cond_full ); #if defined(HB_FIFO_DEBUG) // Remove the fifo from the global fifo list fifo_list_rem( f ); #endif free( f ); *_f = NULL; } void hb_fifo_flush( hb_fifo_t * f ) { hb_buffer_t * b; while( ( b = hb_fifo_get( f ) ) ) { hb_buffer_close( &b ); } hb_lock( f->lock ); hb_cond_signal( f->cond_empty ); hb_cond_signal( f->cond_full ); hb_unlock( f->lock ); }