/* $Id: fifo.c,v 1.17 2005/10/15 18:05:03 titer Exp $
This file is part of the HandBrake source code.
Homepage: .
It may be used under the terms of the GNU General Public License. */
#include "hb.h"
#ifndef SYS_DARWIN
#include
#endif
#define FIFO_TIMEOUT 200
//#define HB_FIFO_DEBUG 1
/* Fifo */
struct hb_fifo_s
{
hb_lock_t * lock;
hb_cond_t * cond_full;
int wait_full;
hb_cond_t * cond_empty;
int wait_empty;
uint32_t capacity;
uint32_t thresh;
uint32_t size;
uint32_t buffer_size;
hb_buffer_t * first;
hb_buffer_t * last;
#if defined(HB_FIFO_DEBUG)
// Fifo list for debugging
hb_fifo_t * next;
#endif
};
#if defined(HB_FIFO_DEBUG)
static hb_fifo_t fifo_list =
{
.next = NULL
};
#endif
/* we round the requested buffer size up to the next power of 2 so there can
* be at most 32 possible pools when the size is a 32 bit int. To avoid a lot
* of slow & error-prone run-time checking we allow for all 32. */
#define MAX_BUFFER_POOLS 32
/* the buffer pool only exists to avoid the two malloc and two free calls that
* it would otherwise take to allocate & free a buffer. but we don't want to
* tie up a lot of memory in the pool because this allocator isn't as general
* as malloc so memory tied up here puts more pressure on the malloc pool.
* A pool of 16 elements will avoid 94% of the malloc/free calls without wasting
* too much memory. */
#define BUFFER_POOL_MAX_ELEMENTS 32
struct hb_buffer_pools_s
{
int64_t allocated;
hb_lock_t *lock;
hb_fifo_t *pool[MAX_BUFFER_POOLS];
} buffers;
void hb_buffer_pool_init( void )
{
buffers.lock = hb_lock_init();
buffers.allocated = 0;
/* we allocate pools for sizes 2^10 through 2^25. requests larger than
* 2^25 will get passed through to malloc. */
int i;
for ( i = 10; i < 26; ++i )
{
buffers.pool[i] = hb_fifo_init(BUFFER_POOL_MAX_ELEMENTS, 1);
buffers.pool[i]->buffer_size = 1 << i;
}
/* requests smaller than 2^10 are satisfied from the 2^10 pool. */
for ( i = 1; i < 10; ++i )
{
buffers.pool[i] = buffers.pool[10];
}
}
#if defined(HB_FIFO_DEBUG)
static void dump_fifo(hb_fifo_t * f)
{
hb_buffer_t * b = f->first;
if (b)
{
while (b)
{
fprintf(stderr, "%p:%d:%d\n", b, b->size, b->alloc);
b = b->next;
}
fprintf(stderr, "\n");
}
}
static void fifo_list_add( hb_fifo_t * f )
{
hb_fifo_t *next = fifo_list.next;
fifo_list.next = f;
f->next = next;
}
static void fifo_list_rem( hb_fifo_t * f )
{
hb_fifo_t *next, *prev;
prev = &fifo_list;
next = fifo_list.next;
while ( next && next != f )
{
prev = next;
next = next->next;
}
if ( next == f )
{
prev->next = f->next;
}
}
// These routines are useful for finding and debugging problems
// with the fifos and buffer pools
static void buffer_pool_validate( hb_fifo_t * f )
{
hb_buffer_t *b;
hb_lock( f->lock );
b = f->first;
while (b)
{
if (b->alloc != f->buffer_size)
{
fprintf(stderr, "Invalid buffer pool size! buf %p size %d pool size %d\n", b, b->alloc, f->buffer_size);
dump_fifo( f );
*(char*)0 = 1;
}
b = b->next;
}
hb_unlock( f->lock );
}
static void buffer_pools_validate( void )
{
int ii;
for ( ii = 10; ii < 26; ++ii )
{
buffer_pool_validate( buffers.pool[ii] );
}
}
void fifo_list_validate( void )
{
hb_fifo_t *next = fifo_list.next;
hb_fifo_t *m;
hb_buffer_t *b, *c;
int count;
buffer_pools_validate();
while ( next )
{
count = 0;
hb_lock( next->lock );
b = next->first;
// Count the number of entries in this fifo
while (b)
{
c = b->next;
// check that the current buffer is not duplicated in this fifo
while (c)
{
if (c == b)
{
fprintf(stderr, "Duplicate buffer in fifo!\n");
dump_fifo(next);
*(char*)0 = 1;
}
c = c->next;
}
// check that the current buffer is not duplicated in another fifo
m = next->next;
while (m)
{
hb_lock( m->lock );
c = m->first;
while (c)
{
if (c == b)
{
fprintf(stderr, "Duplicate buffer in another fifo!\n");
dump_fifo(next);
*(char*)0 = 1;
}
c = c->next;
}
hb_unlock( m->lock );
m = m->next;
}
count++;
b = b->next;
}
if ( count != next->size )
{
fprintf(stderr, "Invalid fifo size! count %d size %d\n", count, next->size);
dump_fifo(next);
*(char*)0 = 1;
}
hb_unlock( next->lock );
next = next->next;
}
}
#endif
void hb_buffer_pool_free( void )
{
int i;
int count;
int64_t freed = 0;
hb_buffer_t *b;
hb_lock(buffers.lock);
for( i = 10; i < 26; ++i)
{
count = 0;
while( ( b = hb_fifo_get(buffers.pool[i]) ) )
{
freed += b->alloc;
if( b->data )
{
free( b->data );
}
free( b );
count++;
}
if ( count )
{
hb_deep_log( 2, "Freed %d buffers of size %d", count,
buffers.pool[i]->buffer_size);
}
}
hb_deep_log( 2, "Allocated %"PRId64" bytes of buffers on this pass and Freed %"PRId64" bytes, "
"%"PRId64" bytes leaked", buffers.allocated, freed, buffers.allocated - freed);
buffers.allocated = 0;
hb_unlock(buffers.lock);
}
static hb_fifo_t *size_to_pool( int size )
{
int i;
for ( i = 0; i < 30; ++i )
{
if ( size <= (1 << i) )
{
return buffers.pool[i];
}
}
return NULL;
}
hb_buffer_t * hb_buffer_init( int size )
{
hb_buffer_t * b;
// Certain libraries (hrm ffmpeg) expect buffers passed to them to
// end on certain alignments (ffmpeg is 8). So allocate some extra bytes.
// Note that we can't simply align the end of our buffer because
// sometimes we feed data to these libraries starting from arbitrary
// points within the buffer.
int alloc = size + 16;
hb_fifo_t *buffer_pool = size_to_pool( alloc );
if( buffer_pool )
{
b = hb_fifo_get( buffer_pool );
if( b )
{
/*
* Zero the contents of the buffer, would be nice if we
* didn't have to do this.
*/
uint8_t *data = b->data;
memset( b, 0, sizeof(hb_buffer_t) );
b->alloc = buffer_pool->buffer_size;
b->size = size;
b->data = data;
return( b );
}
}
/*
* No existing buffers, create a new one
*/
if( !( b = calloc( sizeof( hb_buffer_t ), 1 ) ) )
{
hb_log( "out of memory" );
return NULL;
}
b->size = size;
b->alloc = buffer_pool ? buffer_pool->buffer_size : alloc;
if (size)
{
#if defined( SYS_DARWIN ) || defined( SYS_FREEBSD ) || defined( SYS_MINGW )
b->data = malloc( b->alloc );
#elif defined( SYS_CYGWIN )
/* FIXME */
b->data = malloc( b->alloc + 17 );
#else
b->data = memalign( 16, b->alloc );
#endif
if( !b->data )
{
hb_log( "out of memory" );
free( b );
return NULL;
}
hb_lock(buffers.lock);
buffers.allocated += b->alloc;
hb_unlock(buffers.lock);
}
return b;
}
void hb_buffer_realloc( hb_buffer_t * b, int size )
{
if ( size > b->alloc || b->data == NULL )
{
uint32_t orig = b->alloc;
size = size_to_pool( size )->buffer_size;
b->data = realloc( b->data, size );
b->alloc = size;
hb_lock(buffers.lock);
buffers.allocated += size - orig;
hb_unlock(buffers.lock);
}
}
void hb_buffer_reduce( hb_buffer_t * b, int size )
{
if ( size < b->alloc / 8 || b->data == NULL )
{
hb_buffer_t * tmp = hb_buffer_init( size );
hb_buffer_swap_copy( b, tmp );
memcpy( b->data, tmp->data, size );
tmp->next = NULL;
hb_buffer_close( &tmp );
}
}
// Frees the specified buffer list.
void hb_buffer_close( hb_buffer_t ** _b )
{
hb_buffer_t * b = *_b;
while( b )
{
hb_buffer_t * next = b->next;
hb_fifo_t *buffer_pool = size_to_pool( b->alloc );
b->next = NULL;
// Close any attached subtitle buffers
hb_buffer_close( &b->sub );
if( buffer_pool && b->data && !hb_fifo_is_full( buffer_pool ) )
{
hb_fifo_push_head( buffer_pool, b );
b = next;
continue;
}
// either the pool is full or this size doesn't use a pool
// free the buf
if( b->data )
{
free( b->data );
hb_lock(buffers.lock);
buffers.allocated -= b->alloc;
hb_unlock(buffers.lock);
}
free( b );
b = next;
}
*_b = NULL;
}
void hb_buffer_move_subs( hb_buffer_t * dst, hb_buffer_t * src )
{
// Note that dst takes ownership of the subtitles
dst->sub = src->sub;
src->sub = NULL;
}
hb_fifo_t * hb_fifo_init( int capacity, int thresh )
{
hb_fifo_t * f;
f = calloc( sizeof( hb_fifo_t ), 1 );
f->lock = hb_lock_init();
f->cond_full = hb_cond_init();
f->cond_empty = hb_cond_init();
f->capacity = capacity;
f->thresh = thresh;
f->buffer_size = 0;
#if defined(HB_FIFO_DEBUG)
// Add the fifo to the global fifo list
fifo_list_add( f );
#endif
return f;
}
int hb_fifo_size_bytes( hb_fifo_t * f )
{
int ret = 0;
hb_buffer_t * link;
hb_lock( f->lock );
link = f->first;
while ( link )
{
ret += link->size;
link = link->next;
}
hb_unlock( f->lock );
return ret;
}
int hb_fifo_size( hb_fifo_t * f )
{
int ret;
hb_lock( f->lock );
ret = f->size;
hb_unlock( f->lock );
return ret;
}
int hb_fifo_is_full( hb_fifo_t * f )
{
int ret;
hb_lock( f->lock );
ret = ( f->size >= f->capacity );
hb_unlock( f->lock );
return ret;
}
float hb_fifo_percent_full( hb_fifo_t * f )
{
float ret;
hb_lock( f->lock );
ret = f->size / f->capacity;
hb_unlock( f->lock );
return ret;
}
// Pulls the first packet out of this FIFO, blocking until such a packet is available.
// Returns NULL if this FIFO has been closed or flushed.
hb_buffer_t * hb_fifo_get_wait( hb_fifo_t * f )
{
hb_buffer_t * b;
hb_lock( f->lock );
if( f->size < 1 )
{
f->wait_empty = 1;
hb_cond_timedwait( f->cond_empty, f->lock, FIFO_TIMEOUT );
if( f->size < 1 )
{
hb_unlock( f->lock );
return NULL;
}
}
b = f->first;
f->first = b->next;
b->next = NULL;
f->size -= 1;
if( f->wait_full && f->size == f->capacity - f->thresh )
{
f->wait_full = 0;
hb_cond_signal( f->cond_full );
}
hb_unlock( f->lock );
return b;
}
// Pulls a packet out of this FIFO, or returns NULL if no packet is available.
hb_buffer_t * hb_fifo_get( hb_fifo_t * f )
{
hb_buffer_t * b;
hb_lock( f->lock );
if( f->size < 1 )
{
hb_unlock( f->lock );
return NULL;
}
b = f->first;
f->first = b->next;
b->next = NULL;
f->size -= 1;
if( f->wait_full && f->size == f->capacity - f->thresh )
{
f->wait_full = 0;
hb_cond_signal( f->cond_full );
}
hb_unlock( f->lock );
return b;
}
hb_buffer_t * hb_fifo_see_wait( hb_fifo_t * f )
{
hb_buffer_t * b;
hb_lock( f->lock );
if( f->size < 1 )
{
f->wait_empty = 1;
hb_cond_timedwait( f->cond_empty, f->lock, FIFO_TIMEOUT );
if( f->size < 1 )
{
hb_unlock( f->lock );
return NULL;
}
}
b = f->first;
hb_unlock( f->lock );
return b;
}
// Returns the first packet in the specified FIFO.
// If the FIFO is empty, returns NULL.
hb_buffer_t * hb_fifo_see( hb_fifo_t * f )
{
hb_buffer_t * b;
hb_lock( f->lock );
if( f->size < 1 )
{
hb_unlock( f->lock );
return NULL;
}
b = f->first;
hb_unlock( f->lock );
return b;
}
hb_buffer_t * hb_fifo_see2( hb_fifo_t * f )
{
hb_buffer_t * b;
hb_lock( f->lock );
if( f->size < 2 )
{
hb_unlock( f->lock );
return NULL;
}
b = f->first->next;
hb_unlock( f->lock );
return b;
}
// Waits until the specified FIFO is no longer full or until FIFO_TIMEOUT milliseconds have elapsed.
// Returns whether the FIFO is non-full upon return.
int hb_fifo_full_wait( hb_fifo_t * f )
{
int result;
hb_lock( f->lock );
if( f->size >= f->capacity )
{
f->wait_full = 1;
hb_cond_timedwait( f->cond_full, f->lock, FIFO_TIMEOUT );
}
result = ( f->size < f->capacity );
hb_unlock( f->lock );
return result;
}
// Pushes the specified buffer onto the specified FIFO,
// blocking until the FIFO has space available.
void hb_fifo_push_wait( hb_fifo_t * f, hb_buffer_t * b )
{
if( !b )
{
return;
}
hb_lock( f->lock );
if( f->size >= f->capacity )
{
f->wait_full = 1;
hb_cond_timedwait( f->cond_full, f->lock, FIFO_TIMEOUT );
}
if( f->size > 0 )
{
f->last->next = b;
}
else
{
f->first = b;
}
f->last = b;
f->size += 1;
while( f->last->next )
{
f->size += 1;
f->last = f->last->next;
}
if( f->wait_empty && f->size >= 1 )
{
f->wait_empty = 0;
hb_cond_signal( f->cond_empty );
}
hb_unlock( f->lock );
}
// Appends the specified packet list to the end of the specified FIFO.
void hb_fifo_push( hb_fifo_t * f, hb_buffer_t * b )
{
if( !b )
{
return;
}
hb_lock( f->lock );
if( f->size > 0 )
{
f->last->next = b;
}
else
{
f->first = b;
}
f->last = b;
f->size += 1;
while( f->last->next )
{
f->size += 1;
f->last = f->last->next;
}
if( f->wait_empty && f->size >= 1 )
{
f->wait_empty = 0;
hb_cond_signal( f->cond_empty );
}
hb_unlock( f->lock );
}
// Prepends the specified packet list to the start of the specified FIFO.
void hb_fifo_push_head( hb_fifo_t * f, hb_buffer_t * b )
{
hb_buffer_t * tmp;
uint32_t size = 0;
if( !b )
{
return;
}
hb_lock( f->lock );
/*
* If there are a chain of buffers prepend the lot
*/
tmp = b;
while( tmp->next )
{
tmp = tmp->next;
size += 1;
}
if( f->size > 0 )
{
tmp->next = f->first;
}
else
{
f->last = tmp;
}
f->first = b;
f->size += ( size + 1 );
hb_unlock( f->lock );
}
// Pushes a list of packets onto the specified FIFO as a single element.
void hb_fifo_push_list_element( hb_fifo_t *fifo, hb_buffer_t *buffer_list )
{
hb_buffer_t *container = hb_buffer_init( 0 );
// XXX: Using an arbitrary hb_buffer_t pointer (other than 'next')
// to carry the list inside a single "container" buffer
container->sub = buffer_list;
hb_fifo_push( fifo, container );
}
// Removes a list of packets from the specified FIFO that were stored as a single element.
hb_buffer_t *hb_fifo_get_list_element( hb_fifo_t *fifo )
{
hb_buffer_t *container = hb_fifo_get( fifo );
// XXX: Using an arbitrary hb_buffer_t pointer (other than 'next')
// to carry the list inside a single "container" buffer
hb_buffer_t *buffer_list = container->sub;
hb_buffer_close( &container );
return buffer_list;
}
void hb_fifo_close( hb_fifo_t ** _f )
{
hb_fifo_t * f = *_f;
hb_buffer_t * b;
if ( f == NULL )
return;
hb_deep_log( 2, "fifo_close: trashing %d buffer(s)", hb_fifo_size( f ) );
while( ( b = hb_fifo_get( f ) ) )
{
hb_buffer_close( &b );
}
hb_lock_close( &f->lock );
hb_cond_close( &f->cond_empty );
hb_cond_close( &f->cond_full );
#if defined(HB_FIFO_DEBUG)
// Remove the fifo from the global fifo list
fifo_list_rem( f );
#endif
free( f );
*_f = NULL;
}
void hb_fifo_flush( hb_fifo_t * f )
{
hb_buffer_t * b;
while( ( b = hb_fifo_get( f ) ) )
{
hb_buffer_close( &b );
}
hb_lock( f->lock );
hb_cond_signal( f->cond_empty );
hb_cond_signal( f->cond_full );
hb_unlock( f->lock );
}