/* common.c
Copyright (c) 2003-2018 HandBrake Team
This file is part of the HandBrake source code
Homepage: .
It may be used under the terms of the GNU General Public License v2.
For full terms see the file COPYING file or visit http://www.gnu.org/licenses/gpl-2.0.html
*/
#include
#include
#include
#include
#include "hb.h"
#include "x264.h"
#include "lang.h"
#include "common.h"
#include "h264_common.h"
#include "h265_common.h"
#include "encx264.h"
#ifdef USE_QSV
#include "qsv_common.h"
#endif
#ifdef USE_X265
#include "x265.h"
#endif
#ifdef SYS_MINGW
#include
#endif
static int mixdown_get_opus_coupled_stream_count(int mixdown);
/**********************************************************************
* Global variables
*********************************************************************/
static hb_error_handler_t *error_handler = NULL;
/* Generic IDs for encoders, containers, etc. */
enum
{
HB_GID_NONE = -1, // encoders must NEVER use it
HB_GID_VCODEC_H264,
HB_GID_VCODEC_H265,
HB_GID_VCODEC_MPEG2,
HB_GID_VCODEC_MPEG4,
HB_GID_VCODEC_THEORA,
HB_GID_VCODEC_VP8,
HB_GID_VCODEC_VP9,
HB_GID_ACODEC_AAC,
HB_GID_ACODEC_AAC_HE,
HB_GID_ACODEC_AAC_PASS,
HB_GID_ACODEC_AC3,
HB_GID_ACODEC_AC3_PASS,
HB_GID_ACODEC_AUTO_PASS,
HB_GID_ACODEC_DTS_PASS,
HB_GID_ACODEC_DTSHD_PASS,
HB_GID_ACODEC_EAC3,
HB_GID_ACODEC_EAC3_PASS,
HB_GID_ACODEC_FLAC,
HB_GID_ACODEC_FLAC_PASS,
HB_GID_ACODEC_MP3,
HB_GID_ACODEC_MP3_PASS,
HB_GID_ACODEC_TRUEHD_PASS,
HB_GID_ACODEC_VORBIS,
HB_GID_ACODEC_OPUS,
HB_GID_MUX_MKV,
HB_GID_MUX_MP4,
};
#define HB_VIDEO_CLOCK 27000000 // 27MHz clock
#define HB_VIDEO_FPS_MIN 1
#define HB_VIDEO_FPS_MAX 1000
int hb_video_rate_clock = HB_VIDEO_CLOCK;
int hb_video_rate_min = HB_VIDEO_CLOCK / HB_VIDEO_FPS_MAX; // Min clock rate from *max* frame rate
int hb_video_rate_max = HB_VIDEO_CLOCK / HB_VIDEO_FPS_MIN; // Max clock rate from *min* frame rate
typedef struct
{
hb_rate_t item;
hb_rate_t *next;
int enabled;
} hb_rate_internal_t;
hb_rate_t *hb_video_rates_first_item = NULL;
hb_rate_t *hb_video_rates_last_item = NULL;
hb_rate_internal_t hb_video_rates[] =
{
// legacy framerates (disabled)
{ { "23.976 (NTSC Film)", 1126125, }, NULL, 0, },
{ { "25 (PAL Film/Video)", 1080000, }, NULL, 0, },
{ { "29.97 (NTSC Video)", 900900, }, NULL, 0, },
// actual framerates
{ { "5", 5400000, }, NULL, 1, },
{ { "10", 2700000, }, NULL, 1, },
{ { "12", 2250000, }, NULL, 1, },
{ { "15", 1800000, }, NULL, 1, },
{ { "20", 1350000, }, NULL, 1, },
{ { "23.976", 1126125, }, NULL, 1, },
{ { "24", 1125000, }, NULL, 1, },
{ { "25", 1080000, }, NULL, 1, },
{ { "29.97", 900900, }, NULL, 1, },
{ { "30", 900000, }, NULL, 1, },
{ { "48", 562500, }, NULL, 1, },
{ { "50", 540000, }, NULL, 1, },
{ { "59.94", 450450, }, NULL, 1, },
{ { "60", 450000, }, NULL, 1, },
{ { "72", 375000, }, NULL, 1, },
{ { "75", 360000, }, NULL, 1, },
{ { "90", 300000, }, NULL, 1, },
{ { "100", 270000, }, NULL, 1, },
{ { "120", 225000, }, NULL, 1, },
};
int hb_video_rates_count = sizeof(hb_video_rates) / sizeof(hb_video_rates[0]);
hb_rate_t *hb_audio_rates_first_item = NULL;
hb_rate_t *hb_audio_rates_last_item = NULL;
hb_rate_internal_t hb_audio_rates[] =
{
{ { "8", 8000, }, NULL, 1, },
{ { "11.025", 11025, }, NULL, 1, },
{ { "12", 12000, }, NULL, 1, },
{ { "16", 16000, }, NULL, 1, },
{ { "22.05", 22050, }, NULL, 1, },
{ { "24", 24000, }, NULL, 1, },
{ { "32", 32000, }, NULL, 1, },
{ { "44.1", 44100, }, NULL, 1, },
{ { "48", 48000, }, NULL, 1, },
};
int hb_audio_rates_count = sizeof(hb_audio_rates) / sizeof(hb_audio_rates[0]);
hb_rate_t *hb_audio_bitrates_first_item = NULL;
hb_rate_t *hb_audio_bitrates_last_item = NULL;
hb_rate_internal_t hb_audio_bitrates[] =
{
// AC3-compatible bitrates
{ { "32", 32, }, NULL, 1, },
{ { "40", 40, }, NULL, 1, },
{ { "48", 48, }, NULL, 1, },
{ { "56", 56, }, NULL, 1, },
{ { "64", 64, }, NULL, 1, },
{ { "80", 80, }, NULL, 1, },
{ { "96", 96, }, NULL, 1, },
{ { "112", 112, }, NULL, 1, },
{ { "128", 128, }, NULL, 1, },
{ { "160", 160, }, NULL, 1, },
{ { "192", 192, }, NULL, 1, },
{ { "224", 224, }, NULL, 1, },
{ { "256", 256, }, NULL, 1, },
{ { "320", 320, }, NULL, 1, },
{ { "384", 384, }, NULL, 1, },
{ { "448", 448, }, NULL, 1, },
{ { "512", 512, }, NULL, 1, },
{ { "576", 576, }, NULL, 1, },
{ { "640", 640, }, NULL, 1, },
// additional bitrates
{ { "768", 768, }, NULL, 1, },
{ { "960", 960, }, NULL, 1, },
{ { "1152", 1152, }, NULL, 1, },
{ { "1344", 1344, }, NULL, 1, },
{ { "1536", 1536, }, NULL, 1, },
{ { "2304", 2304, }, NULL, 1, },
{ { "3072", 3072, }, NULL, 1, },
{ { "4608", 4608, }, NULL, 1, },
{ { "6144", 6144, }, NULL, 1, },
};
int hb_audio_bitrates_count = sizeof(hb_audio_bitrates) / sizeof(hb_audio_bitrates[0]);
typedef struct
{
hb_dither_t item;
hb_dither_t *next;
int enabled;
} hb_dither_internal_t;
hb_dither_t *hb_audio_dithers_first_item = NULL;
hb_dither_t *hb_audio_dithers_last_item = NULL;
hb_dither_internal_t hb_audio_dithers[] =
{
{ { "default", "auto", AV_RESAMPLE_DITHER_NONE - 1, }, NULL, 1, },
{ { "none", "none", AV_RESAMPLE_DITHER_NONE, }, NULL, 1, },
{ { "rectangular", "rectangular", AV_RESAMPLE_DITHER_RECTANGULAR, }, NULL, 1, },
{ { "triangular", "triangular", AV_RESAMPLE_DITHER_TRIANGULAR, }, NULL, 1, },
{ { "triangular with high pass", "triangular_hp", AV_RESAMPLE_DITHER_TRIANGULAR_HP, }, NULL, 1, },
{ { "triangular with noise shaping", "triangular_ns", AV_RESAMPLE_DITHER_TRIANGULAR_NS, }, NULL, 1, },
};
int hb_audio_dithers_count = sizeof(hb_audio_dithers) / sizeof(hb_audio_dithers[0]);
typedef struct
{
hb_mixdown_t item;
hb_mixdown_t *next;
int enabled;
} hb_mixdown_internal_t;
hb_mixdown_t *hb_audio_mixdowns_first_item = NULL;
hb_mixdown_t *hb_audio_mixdowns_last_item = NULL;
hb_mixdown_internal_t hb_audio_mixdowns[] =
{
// legacy mixdowns, back to HB 0.9.4 whenever possible (disabled)
{ { "AC3 Passthru", "", HB_AMIXDOWN_NONE, }, NULL, 0, },
{ { "DTS Passthru", "", HB_AMIXDOWN_NONE, }, NULL, 0, },
{ { "DTS-HD Passthru", "", HB_AMIXDOWN_NONE, }, NULL, 0, },
{ { "6-channel discrete", "6ch", HB_AMIXDOWN_5POINT1, }, NULL, 0, },
// actual mixdowns
{ { "None", "none", HB_AMIXDOWN_NONE, }, NULL, 1, },
{ { "Mono", "mono", HB_AMIXDOWN_MONO, }, NULL, 1, },
{ { "Mono (Left Only)", "left_only", HB_AMIXDOWN_LEFT, }, NULL, 1, },
{ { "Mono (Right Only)", "right_only", HB_AMIXDOWN_RIGHT, }, NULL, 1, },
{ { "Stereo", "stereo", HB_AMIXDOWN_STEREO, }, NULL, 1, },
{ { "Dolby Surround", "dpl1", HB_AMIXDOWN_DOLBY, }, NULL, 1, },
{ { "Dolby Pro Logic II", "dpl2", HB_AMIXDOWN_DOLBYPLII, }, NULL, 1, },
{ { "5.1 Channels", "5point1", HB_AMIXDOWN_5POINT1, }, NULL, 1, },
{ { "6.1 Channels", "6point1", HB_AMIXDOWN_6POINT1, }, NULL, 1, },
{ { "7.1 Channels", "7point1", HB_AMIXDOWN_7POINT1, }, NULL, 1, },
{ { "7.1 (5F/2R/LFE)", "5_2_lfe", HB_AMIXDOWN_5_2_LFE, }, NULL, 1, },
};
int hb_audio_mixdowns_count = sizeof(hb_audio_mixdowns) / sizeof(hb_audio_mixdowns[0]);
typedef struct
{
hb_encoder_t item;
hb_encoder_t *next;
int enabled;
int gid;
} hb_encoder_internal_t;
hb_encoder_t *hb_video_encoders_first_item = NULL;
hb_encoder_t *hb_video_encoders_last_item = NULL;
hb_encoder_internal_t hb_video_encoders[] =
{
// legacy encoders, back to HB 0.9.4 whenever possible (disabled)
{ { "FFmpeg", "ffmpeg", NULL, HB_VCODEC_FFMPEG_MPEG4, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 0, HB_GID_VCODEC_MPEG4, },
{ { "MPEG-4 (FFmpeg)", "ffmpeg4", NULL, HB_VCODEC_FFMPEG_MPEG4, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 0, HB_GID_VCODEC_MPEG4, },
{ { "MPEG-2 (FFmpeg)", "ffmpeg2", NULL, HB_VCODEC_FFMPEG_MPEG2, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 0, HB_GID_VCODEC_MPEG2, },
{ { "VP3 (Theora)", "libtheora", NULL, HB_VCODEC_THEORA, HB_MUX_MASK_MKV, }, NULL, 0, HB_GID_VCODEC_THEORA, },
// actual encoders
{ { "H.264 (x264)", "x264", "H.264 (libx264)", HB_VCODEC_X264_8BIT, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_VCODEC_H264, },
{ { "H.264 10-bit (x264)", "x264_10bit", "H.264 10-bit (libx264)", HB_VCODEC_X264_10BIT, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_VCODEC_H264, },
{ { "H.264 (Intel QSV)", "qsv_h264", "H.264 (Intel Media SDK)", HB_VCODEC_QSV_H264, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_VCODEC_H264, },
{ { "H.265 (x265)", "x265", "H.265 (libx265)", HB_VCODEC_X265_8BIT, HB_MUX_AV_MP4|HB_MUX_AV_MKV, }, NULL, 1, HB_GID_VCODEC_H265, },
{ { "H.265 10-bit (x265)", "x265_10bit", "H.265 10-bit (libx265)", HB_VCODEC_X265_10BIT, HB_MUX_AV_MP4|HB_MUX_AV_MKV, }, NULL, 1, HB_GID_VCODEC_H265, },
{ { "H.265 12-bit (x265)", "x265_12bit", "H.265 12-bit (libx265)", HB_VCODEC_X265_12BIT, HB_MUX_AV_MP4|HB_MUX_AV_MKV, }, NULL, 1, HB_GID_VCODEC_H265, },
{ { "H.265 16-bit (x265)", "x265_16bit", "H.265 16-bit (libx265)", HB_VCODEC_X265_16BIT, HB_MUX_AV_MP4|HB_MUX_AV_MKV, }, NULL, 1, HB_GID_VCODEC_H265, },
{ { "H.265 (Intel QSV)", "qsv_h265", "H.265 (Intel Media SDK)", HB_VCODEC_QSV_H265, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_VCODEC_H265, },
{ { "H.265 10-bit (Intel QSV)", "qsv_h265_10bit", "H.265 10-bit (Intel Media SDK)", HB_VCODEC_QSV_H265_10BIT, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_VCODEC_H265, },
{ { "MPEG-4", "mpeg4", "MPEG-4 (libavcodec)", HB_VCODEC_FFMPEG_MPEG4, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_VCODEC_MPEG4, },
{ { "MPEG-2", "mpeg2", "MPEG-2 (libavcodec)", HB_VCODEC_FFMPEG_MPEG2, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_VCODEC_MPEG2, },
{ { "VP8", "VP8", "VP8 (libvpx)", HB_VCODEC_FFMPEG_VP8, HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_VCODEC_VP8, },
{ { "VP9", "VP9", "VP9 (libvpx)", HB_VCODEC_FFMPEG_VP9, HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_VCODEC_VP9, },
{ { "Theora", "theora", "Theora (libtheora)", HB_VCODEC_THEORA, HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_VCODEC_THEORA, },
};
int hb_video_encoders_count = sizeof(hb_video_encoders) / sizeof(hb_video_encoders[0]);
static int hb_video_encoder_is_enabled(int encoder)
{
#ifdef USE_QSV
if (encoder & HB_VCODEC_QSV_MASK)
{
return hb_qsv_video_encoder_is_enabled(encoder);
}
#endif
switch (encoder)
{
// the following encoders are always enabled
case HB_VCODEC_THEORA:
case HB_VCODEC_FFMPEG_MPEG4:
case HB_VCODEC_FFMPEG_MPEG2:
case HB_VCODEC_FFMPEG_VP8:
case HB_VCODEC_FFMPEG_VP9:
return 1;
#ifdef USE_X265
case HB_VCODEC_X265_8BIT:
case HB_VCODEC_X265_10BIT:
case HB_VCODEC_X265_12BIT:
case HB_VCODEC_X265_16BIT:
{
const x265_api *api;
api = x265_api_query(hb_video_encoder_get_depth(encoder), X265_BUILD, NULL);
return (api != NULL);
};
#endif
case HB_VCODEC_X264_8BIT:
case HB_VCODEC_X264_10BIT:
{
const x264_api_t *api;
api = hb_x264_api_get(hb_video_encoder_get_depth(encoder));
return (api != NULL);
}
default:
return 0;
}
}
hb_encoder_t *hb_audio_encoders_first_item = NULL;
hb_encoder_t *hb_audio_encoders_last_item = NULL;
hb_encoder_internal_t hb_audio_encoders[] =
{
// legacy encoders, back to HB 0.9.4 whenever possible (disabled)
{ { "", "dts", NULL, HB_ACODEC_DCA_PASS, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 0, HB_GID_ACODEC_DTS_PASS, },
{ { "AAC (faac)", "faac", NULL, 0, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 0, HB_GID_ACODEC_AAC, },
{ { "AAC (ffmpeg)", "ffaac", NULL, HB_ACODEC_FFAAC, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 0, HB_GID_ACODEC_AAC, },
{ { "AC3 (ffmpeg)", "ffac3", NULL, HB_ACODEC_AC3, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 0, HB_GID_ACODEC_AC3, },
{ { "MP3 (lame)", "lame", NULL, HB_ACODEC_LAME, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 0, HB_GID_ACODEC_MP3, },
{ { "Vorbis (vorbis)", "libvorbis", NULL, HB_ACODEC_VORBIS, HB_MUX_MASK_MKV, }, NULL, 0, HB_GID_ACODEC_VORBIS, },
{ { "FLAC (ffmpeg)", "ffflac", NULL, HB_ACODEC_FFFLAC, HB_MUX_MASK_MKV, }, NULL, 0, HB_GID_ACODEC_FLAC, },
{ { "FLAC (24-bit)", "ffflac24", NULL, HB_ACODEC_FFFLAC24, HB_MUX_MASK_MKV, }, NULL, 0, HB_GID_ACODEC_FLAC, },
// generic names
{ { "AAC", "aac", NULL, 0, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 0, HB_GID_ACODEC_AAC, },
{ { "HE-AAC", "haac", NULL, 0, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 0, HB_GID_ACODEC_AAC_HE, },
// actual encoders
{ { "None", "none", "None", HB_ACODEC_NONE, 0, }, NULL, 1, HB_GID_NONE, },
{ { "AAC (CoreAudio)", "ca_aac", "AAC (Apple AudioToolbox)", HB_ACODEC_CA_AAC, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_AAC, },
{ { "HE-AAC (CoreAudio)", "ca_haac", "HE-AAC (Apple AudioToolbox)", HB_ACODEC_CA_HAAC, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_AAC_HE, },
{ { "AAC (FDK)", "fdk_aac", "AAC (libfdk_aac)", HB_ACODEC_FDK_AAC, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_AAC, },
{ { "HE-AAC (FDK)", "fdk_haac", "HE-AAC (libfdk_aac)", HB_ACODEC_FDK_HAAC, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_AAC_HE, },
{ { "AAC (avcodec)", "av_aac", "AAC (libavcodec)", HB_ACODEC_FFAAC, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_AAC, },
{ { "AAC Passthru", "copy:aac", "AAC Passthru", HB_ACODEC_AAC_PASS, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_AAC_PASS, },
{ { "AC3", "ac3", "AC3 (libavcodec)", HB_ACODEC_AC3, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_AC3, },
{ { "AC3 Passthru", "copy:ac3", "AC3 Passthru", HB_ACODEC_AC3_PASS, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_AC3_PASS, },
{ { "E-AC3", "eac3", "E-AC3 (libavcodec)", HB_ACODEC_FFEAC3, HB_MUX_AV_MKV, }, NULL, 1, HB_GID_ACODEC_EAC3, },
{ { "E-AC3 Passthru", "copy:eac3", "E-AC3 Passthru", HB_ACODEC_EAC3_PASS, HB_MUX_AV_MKV, }, NULL, 1, HB_GID_ACODEC_EAC3_PASS, },
{ { "TrueHD Passthru", "copy:truehd","TrueHD Passthru", HB_ACODEC_TRUEHD_PASS, HB_MUX_AV_MKV, }, NULL, 1, HB_GID_ACODEC_TRUEHD_PASS,},
{ { "DTS Passthru", "copy:dts", "DTS Passthru", HB_ACODEC_DCA_PASS, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_DTS_PASS, },
{ { "DTS-HD Passthru", "copy:dtshd", "DTS-HD Passthru", HB_ACODEC_DCA_HD_PASS, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_DTSHD_PASS, },
{ { "MP3", "mp3", "MP3 (libmp3lame)", HB_ACODEC_LAME, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_MP3, },
{ { "MP3 Passthru", "copy:mp3", "MP3 Passthru", HB_ACODEC_MP3_PASS, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_MP3_PASS, },
{ { "Vorbis", "vorbis", "Vorbis (libvorbis)", HB_ACODEC_VORBIS, HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_VORBIS, },
{ { "FLAC 16-bit", "flac16", "FLAC 16-bit (libavcodec)", HB_ACODEC_FFFLAC, HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_FLAC, },
{ { "FLAC 24-bit", "flac24", "FLAC 24-bit (libavcodec)", HB_ACODEC_FFFLAC24, HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_FLAC, },
{ { "FLAC Passthru", "copy:flac", "FLAC Passthru", HB_ACODEC_FLAC_PASS, HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_FLAC_PASS, },
{ { "Opus", "opus", "Opus (libopus)", HB_ACODEC_OPUS, HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_OPUS, },
{ { "Auto Passthru", "copy", "Auto Passthru", HB_ACODEC_AUTO_PASS, HB_MUX_MASK_MP4|HB_MUX_MASK_MKV, }, NULL, 1, HB_GID_ACODEC_AUTO_PASS, },
};
int hb_audio_encoders_count = sizeof(hb_audio_encoders) / sizeof(hb_audio_encoders[0]);
static int hb_audio_encoder_is_enabled(int encoder)
{
if (encoder & HB_ACODEC_PASS_FLAG)
{
// Passthru encoders are always enabled
return 1;
}
switch (encoder)
{
#ifdef __APPLE__
case HB_ACODEC_CA_AAC:
case HB_ACODEC_CA_HAAC:
return 1;
#endif
#ifdef USE_LIBAV_AAC
case HB_ACODEC_FFAAC:
return avcodec_find_encoder_by_name("aac") != NULL;
#endif
case HB_ACODEC_FDK_AAC:
case HB_ACODEC_FDK_HAAC:
return avcodec_find_encoder_by_name("libfdk_aac") != NULL;
case HB_ACODEC_AC3:
return avcodec_find_encoder(AV_CODEC_ID_AC3) != NULL;
case HB_ACODEC_FFEAC3:
return avcodec_find_encoder(AV_CODEC_ID_EAC3) != NULL;
case HB_ACODEC_FFFLAC:
case HB_ACODEC_FFFLAC24:
return avcodec_find_encoder(AV_CODEC_ID_FLAC) != NULL;
case HB_ACODEC_OPUS:
return avcodec_find_encoder(AV_CODEC_ID_OPUS) != NULL;
// the following encoders are always enabled
case HB_ACODEC_LAME:
case HB_ACODEC_VORBIS:
case HB_ACODEC_NONE:
return 1;
default:
return 0;
}
}
typedef struct
{
hb_container_t item;
hb_container_t *next;
int enabled;
int gid;
} hb_container_internal_t;
hb_container_t *hb_containers_first_item = NULL;
hb_container_t *hb_containers_last_item = NULL;
hb_container_internal_t hb_containers[] =
{
// legacy muxers, back to HB 0.9.4 whenever possible (disabled)
{ { "M4V file", "m4v", NULL, "m4v", 0, }, NULL, 0, HB_GID_MUX_MP4, },
{ { "MP4 file", "mp4", NULL, "mp4", 0, }, NULL, 0, HB_GID_MUX_MP4, },
{ { "MKV file", "mkv", NULL, "mkv", 0, }, NULL, 0, HB_GID_MUX_MKV, },
// actual muxers
{ { "MPEG-4 (avformat)", "av_mp4", "MPEG-4 (libavformat)", "mp4", HB_MUX_AV_MP4, }, NULL, 1, HB_GID_MUX_MP4, },
{ { "MPEG-4 (mp4v2)", "mp4v2", "MPEG-4 (libmp4v2)", "mp4", HB_MUX_MP4V2, }, NULL, 1, HB_GID_MUX_MP4, },
{ { "Matroska (avformat)", "av_mkv", "Matroska (libavformat)", "mkv", HB_MUX_AV_MKV, }, NULL, 1, HB_GID_MUX_MKV, },
{ { "Matroska (libmkv)", "libmkv", "Matroska (libmkv)", "mkv", HB_MUX_LIBMKV, }, NULL, 1, HB_GID_MUX_MKV, },
};
int hb_containers_count = sizeof(hb_containers) / sizeof(hb_containers[0]);
static int hb_container_is_enabled(int format)
{
switch (format)
{
case HB_MUX_AV_MP4:
case HB_MUX_AV_MKV:
return 1;
default:
return 0;
}
}
void hb_common_global_init()
{
static int common_init_done = 0;
if (common_init_done)
return;
int i, j;
// video framerates
for (i = 0; i < hb_video_rates_count; i++)
{
if (hb_video_rates[i].enabled)
{
if (hb_video_rates_first_item == NULL)
{
hb_video_rates_first_item = &hb_video_rates[i].item;
}
else
{
((hb_rate_internal_t*)hb_video_rates_last_item)->next =
&hb_video_rates[i].item;
}
hb_video_rates_last_item = &hb_video_rates[i].item;
}
}
// fallbacks are static for now (no setup required)
// audio samplerates
for (i = 0; i < hb_audio_rates_count; i++)
{
if (hb_audio_rates[i].enabled)
{
if (hb_audio_rates_first_item == NULL)
{
hb_audio_rates_first_item = &hb_audio_rates[i].item;
}
else
{
((hb_rate_internal_t*)hb_audio_rates_last_item)->next =
&hb_audio_rates[i].item;
}
hb_audio_rates_last_item = &hb_audio_rates[i].item;
}
}
// fallbacks are static for now (no setup required)
// audio bitrates
for (i = 0; i < hb_audio_bitrates_count; i++)
{
if (hb_audio_bitrates[i].enabled)
{
if (hb_audio_bitrates_first_item == NULL)
{
hb_audio_bitrates_first_item = &hb_audio_bitrates[i].item;
}
else
{
((hb_rate_internal_t*)hb_audio_bitrates_last_item)->next =
&hb_audio_bitrates[i].item;
}
hb_audio_bitrates_last_item = &hb_audio_bitrates[i].item;
}
}
// fallbacks are static for now (no setup required)
// audio dithers
for (i = 0; i < hb_audio_dithers_count; i++)
{
if (hb_audio_dithers[i].enabled)
{
if (hb_audio_dithers_first_item == NULL)
{
hb_audio_dithers_first_item = &hb_audio_dithers[i].item;
}
else
{
((hb_dither_internal_t*)hb_audio_dithers_last_item)->next =
&hb_audio_dithers[i].item;
}
hb_audio_dithers_last_item = &hb_audio_dithers[i].item;
}
}
// fallbacks are static for now (no setup required)
// audio mixdowns
for (i = 0; i < hb_audio_mixdowns_count; i++)
{
if (hb_audio_mixdowns[i].enabled)
{
if (hb_audio_mixdowns_first_item == NULL)
{
hb_audio_mixdowns_first_item = &hb_audio_mixdowns[i].item;
}
else
{
((hb_mixdown_internal_t*)hb_audio_mixdowns_last_item)->next =
&hb_audio_mixdowns[i].item;
}
hb_audio_mixdowns_last_item = &hb_audio_mixdowns[i].item;
}
}
// fallbacks are static for now (no setup required)
// video encoders
for (i = 0; i < hb_video_encoders_count; i++)
{
if (hb_video_encoders[i].enabled)
{
// we still need to check
hb_video_encoders[i].enabled =
hb_video_encoder_is_enabled(hb_video_encoders[i].item.codec);
}
if (hb_video_encoders[i].enabled)
{
if (hb_video_encoders_first_item == NULL)
{
hb_video_encoders_first_item = &hb_video_encoders[i].item;
}
else
{
((hb_encoder_internal_t*)hb_video_encoders_last_item)->next =
&hb_video_encoders[i].item;
}
hb_video_encoders_last_item = &hb_video_encoders[i].item;
}
}
// setup fallbacks
for (i = 0; i < hb_video_encoders_count; i++)
{
if (!hb_video_encoders[i].enabled)
{
if ((hb_video_encoders[i].item.codec & HB_VCODEC_MASK) &&
(hb_video_encoder_is_enabled(hb_video_encoders[i].item.codec)))
{
// we have a specific fallback and it's enabled
continue;
}
for (j = 0; j < hb_video_encoders_count; j++)
{
if (hb_video_encoders[j].enabled &&
hb_video_encoders[j].gid == hb_video_encoders[i].gid)
{
hb_video_encoders[i].item.codec = hb_video_encoders[j].item.codec;
break;
}
}
}
}
// audio encoders
for (i = 0; i < hb_audio_encoders_count; i++)
{
if (hb_audio_encoders[i].enabled)
{
// we still need to check
hb_audio_encoders[i].enabled =
hb_audio_encoder_is_enabled(hb_audio_encoders[i].item.codec);
}
if (hb_audio_encoders[i].enabled)
{
if (hb_audio_encoders_first_item == NULL)
{
hb_audio_encoders_first_item = &hb_audio_encoders[i].item;
}
else
{
((hb_encoder_internal_t*)hb_audio_encoders_last_item)->next =
&hb_audio_encoders[i].item;
}
hb_audio_encoders_last_item = &hb_audio_encoders[i].item;
}
}
// setup fallbacks
for (i = 0; i < hb_audio_encoders_count; i++)
{
if (!hb_audio_encoders[i].enabled)
{
if ((hb_audio_encoders[i].item.codec & HB_ACODEC_MASK) &&
(hb_audio_encoder_is_enabled(hb_audio_encoders[i].item.codec)))
{
// we have a specific fallback and it's enabled
continue;
}
for (j = 0; j < hb_audio_encoders_count; j++)
{
if (hb_audio_encoders[j].enabled &&
hb_audio_encoders[j].gid == hb_audio_encoders[i].gid)
{
hb_audio_encoders[i].item.codec = hb_audio_encoders[j].item.codec;
break;
}
}
if (hb_audio_encoders[i].gid == HB_GID_ACODEC_AAC_HE)
{
// try to find an AAC fallback if no HE-AAC encoder is available
for (j = 0; j < hb_audio_encoders_count; j++)
{
if (hb_audio_encoders[j].enabled &&
hb_audio_encoders[j].gid == HB_GID_ACODEC_AAC)
{
hb_audio_encoders[i].item.codec = hb_audio_encoders[j].item.codec;
break;
}
}
}
}
}
// video containers
for (i = 0; i < hb_containers_count; i++)
{
if (hb_containers[i].enabled)
{
// we still need to check
hb_containers[i].enabled =
hb_container_is_enabled(hb_containers[i].item.format);
}
if (hb_containers[i].enabled)
{
if (hb_containers_first_item == NULL)
{
hb_containers_first_item = &hb_containers[i].item;
}
else
{
((hb_container_internal_t*)hb_containers_last_item)->next =
&hb_containers[i].item;
}
hb_containers_last_item = &hb_containers[i].item;
}
}
// setup fallbacks
for (i = 0; i < hb_containers_count; i++)
{
if (!hb_containers[i].enabled)
{
if ((hb_containers[i].item.format & HB_MUX_MASK) &&
(hb_container_is_enabled(hb_containers[i].item.format)))
{
// we have a specific fallback and it's enabled
continue;
}
for (j = 0; j < hb_containers_count; j++)
{
if (hb_containers[j].enabled &&
hb_containers[j].gid == hb_containers[i].gid)
{
hb_containers[i].item.format = hb_containers[j].item.format;
break;
}
}
}
}
// we're done, yay!
common_init_done = 1;
}
int hb_video_framerate_get_from_name(const char *name)
{
if (name == NULL || *name == '\0')
goto fail;
int i;
for (i = 0; i < hb_video_rates_count; i++)
{
if (!strcasecmp(hb_video_rates[i].item.name, name))
{
return hb_video_rates[i].item.rate;
}
}
fail:
return -1;
}
const char* hb_video_framerate_get_name(int framerate)
{
if (framerate > hb_video_rates_first_item->rate ||
framerate < hb_video_rates_last_item ->rate)
goto fail;
const hb_rate_t *video_framerate = NULL;
while ((video_framerate = hb_video_framerate_get_next(video_framerate)) != NULL)
{
if (video_framerate->rate == framerate)
{
return video_framerate->name;
}
}
fail:
return NULL;
}
const char* hb_video_framerate_sanitize_name(const char *name)
{
return hb_video_framerate_get_name(hb_video_framerate_get_from_name(name));
}
void hb_video_framerate_get_limits(int *low, int *high, int *clock)
{
*low = hb_video_rate_min;
*high = hb_video_rate_max;
*clock = hb_video_rate_clock;
}
const hb_rate_t* hb_video_framerate_get_next(const hb_rate_t *last)
{
if (last == NULL)
{
return hb_video_rates_first_item;
}
return ((hb_rate_internal_t*)last)->next;
}
int hb_video_framerate_get_close(hb_rational_t *framerate, double thresh)
{
double fps_in;
const hb_rate_t * rate = NULL;
int result = -1;
double closest = thresh;
fps_in = (double)framerate->num / framerate->den;
while ((rate = hb_video_framerate_get_next(rate)) != NULL)
{
double fps = (double)hb_video_rate_clock / rate->rate;
if (ABS(fps - fps_in) < closest)
{
result = rate->rate;
closest = ABS(fps - fps_in);
}
}
return result;
}
int hb_audio_samplerate_is_supported(int samplerate, uint32_t codec)
{
switch (codec)
{
case HB_ACODEC_AC3:
case HB_ACODEC_FFEAC3:
case HB_ACODEC_CA_HAAC:
// ca_haac can't do samplerates < 32 kHz
// libav's E-AC-3 encoder can't do samplerates < 32 kHz
// AC-3 < 32 kHz suffers from poor hardware compatibility
if (samplerate < 32000)
return 0;
else
return 1;
case HB_ACODEC_FDK_HAAC:
// fdk_haac can't do samplerates < 16 kHz
if (samplerate < 16000)
return 0;
else
return 1;
case HB_ACODEC_OPUS:
switch (samplerate)
{
// Opus only supports samplerates 8kHz, 12kHz, 16kHz,
// 24kHz, 48kHz
case 8000:
case 12000:
case 16000:
case 24000:
case 48000:
return 1;
default:
return 0;
}
default:
return 1;
}
}
int hb_audio_samplerate_get_sr_shift(int samplerate)
{
/* sr_shift: 0 -> 48000, 44100, 32000 Hz
* 1 -> 24000, 22050, 16000 Hz
* 2 -> 12000, 11025, 8000 Hz
*
* also, since samplerates are sanitized downwards:
*
* (samplerate < 32000) implies (samplerate <= 24000)
*/
return ((samplerate < 16000) ? 2 : (samplerate < 32000) ? 1 : 0);
}
int hb_audio_samplerate_get_from_name(const char *name)
{
if (name == NULL || *name == '\0')
goto fail;
int i;
for (i = 0; i < hb_audio_rates_count; i++)
{
if (!strcasecmp(hb_audio_rates[i].item.name, name))
{
return hb_audio_rates[i].item.rate;
}
}
// maybe the samplerate was specified in Hz
i = atoi(name);
if (i >= hb_audio_rates_first_item->rate &&
i <= hb_audio_rates_last_item ->rate)
{
return hb_audio_samplerate_find_closest(i, HB_ACODEC_INVALID);
}
fail:
return -1;
}
const char* hb_audio_samplerate_get_name(int samplerate)
{
if (samplerate < hb_audio_rates_first_item->rate ||
samplerate > hb_audio_rates_last_item ->rate)
goto fail;
const hb_rate_t *audio_samplerate = NULL;
while ((audio_samplerate = hb_audio_samplerate_get_next(audio_samplerate)) != NULL)
{
if (audio_samplerate->rate == samplerate)
{
return audio_samplerate->name;
}
}
fail:
return NULL;
}
const hb_rate_t* hb_audio_samplerate_get_next(const hb_rate_t *last)
{
if (last == NULL)
{
return hb_audio_rates_first_item;
}
return ((hb_rate_internal_t*)last)->next;
}
const hb_rate_t* hb_audio_samplerate_get_next_for_codec(const hb_rate_t *last,
uint32_t codec)
{
while ((last = hb_audio_samplerate_get_next(last)) != NULL)
if (hb_audio_samplerate_is_supported(last->rate, codec))
return last;
// None found or end of list
return NULL;
}
int hb_audio_samplerate_find_closest(int samplerate, uint32_t codec)
{
const hb_rate_t * rate, * prev, * next;
rate = prev = next = hb_audio_samplerate_get_next_for_codec(NULL, codec);
if (rate == NULL)
{
// This codec doesn't support any samplerate
return 0;
}
while (rate != NULL && next->rate < samplerate)
{
rate = hb_audio_samplerate_get_next_for_codec(rate, codec);
if (rate != NULL)
{
prev = next;
next = rate;
}
}
int delta_prev = samplerate - prev->rate;
int delta_next = next->rate - samplerate;
if (delta_prev <= delta_next)
{
return prev->rate;
}
else
{
return next->rate;
}
}
// Given an input bitrate, find closest match in the set of allowed bitrates
static int hb_audio_bitrate_find_closest(int bitrate)
{
// Check if bitrate mode was disabled
if (bitrate <= 0)
return bitrate;
int closest_bitrate = hb_audio_bitrates_first_item->rate;
const hb_rate_t *audio_bitrate = NULL;
while ((audio_bitrate = hb_audio_bitrate_get_next(audio_bitrate)) != NULL)
{
if (bitrate == audio_bitrate->rate)
{
// valid bitrate
closest_bitrate = audio_bitrate->rate;
break;
}
if (bitrate > audio_bitrate->rate)
{
// bitrates are sanitized downwards
closest_bitrate = audio_bitrate->rate;
}
}
return closest_bitrate;
}
// Given an input bitrate, sanitize it.
// Check low and high limits and make sure it is in the set of allowed bitrates.
int hb_audio_bitrate_get_best(uint32_t codec, int bitrate, int samplerate,
int mixdown)
{
int low, high;
hb_audio_bitrate_get_limits(codec, samplerate, mixdown, &low, &high);
if (bitrate > high)
bitrate = high;
if (bitrate < low)
bitrate = low;
return hb_audio_bitrate_find_closest(bitrate);
}
// Get the default bitrate for a given codec/samplerate/mixdown triplet.
int hb_audio_bitrate_get_default(uint32_t codec, int samplerate, int mixdown)
{
if ((codec & HB_ACODEC_PASS_FLAG) || !(codec & HB_ACODEC_MASK))
goto fail;
int bitrate, nchannels, nlfe, sr_shift;
/* full-bandwidth channels, sr_shift */
nlfe = hb_mixdown_get_low_freq_channel_count(mixdown);
nchannels = hb_mixdown_get_discrete_channel_count(mixdown) - nlfe;
sr_shift = hb_audio_samplerate_get_sr_shift(samplerate);
switch (codec)
{
case HB_ACODEC_FFFLAC:
case HB_ACODEC_FFFLAC24:
goto fail;
// 96, 224, 640 Kbps
case HB_ACODEC_AC3:
bitrate = (nchannels * 128) - (32 * (nchannels < 5));
break;
// Our E-AC-3 encoder is pretty similar to our AC-3 encoder but it does
// allow for higher bitrates, should some users want a bit more quality
// at the expense of compression efficiency - still, let's remain
// compatible with passthru over S/PDIF by default: 384, 768, 1536 Kbps
case HB_ACODEC_FFEAC3:
bitrate = (nchannels * 384) - (128 * (nchannels - 2) * (nchannels > 2));
break;
case HB_ACODEC_CA_HAAC:
case HB_ACODEC_FDK_HAAC:
bitrate = nchannels * 32;
break;
case HB_ACODEC_OPUS:
{
int coupled = mixdown_get_opus_coupled_stream_count(mixdown);
int uncoupled = nchannels + nlfe - 2 * coupled;
bitrate = coupled * 96 + uncoupled * 64;
} break;
default:
bitrate = nchannels * 80;
break;
}
// sample_rate adjustment
bitrate >>= sr_shift;
return hb_audio_bitrate_get_best(codec, bitrate, samplerate, mixdown);
fail:
return -1;
}
/* Get the bitrate low and high limits for a codec/samplerate/mixdown triplet.
*
* Encoder 1.0 channel 2.0 channels 5.1 channels 6.1 channels 7.1 channels
* --------------------------------------------------------------------------------------
*
* ffaac
* -----
* supported samplerates: 8 - 48 kHz
* libavcodec/aacenc.c defines a maximum bitrate:
* -> 6144 * samplerate / 1024 bps (per channel, incl. LFE).
* But output bitrates don't go as high as the theoretical maximums:
* 12 kHz 61 (72) 123 (144)
* 24 kHz 121 (144) 242 (288)
* 48 kHz 236 (288) 472 (576)
* Also, ffaac isn't a great encoder, so you don't want to allow too low a bitrate.
* Limits: minimum of 32 Kbps per channel
* maximum of 192 Kbps per channel at 32 kHz, adjusted for sr_shift
* maximum of 256 Kbps per channel at 44.1-48 kHz, adjusted for sr_shift
*
* vorbis
* ------
* supported samplerates: 8 - 48 kHz
* lib/modes/setup_*.h provides a range of allowed bitrates for various configurations.
* for each samplerate, the highest minimums and lowest maximums are:
* 8 kHz Minimum 8 Kbps, maximum 32 Kbps (per channel, incl. LFE).
* 12 kHz Minimum 14 Kbps, maximum 44 Kbps (per channel, incl. LFE).
* 16 kHz Minimum 16 Kbps, maximum 86 Kbps (per channel, incl. LFE).
* 24 kHz Minimum 22 Kbps, maximum 86 Kbps (per channel, incl. LFE).
* 32 kHz Minimum 26 Kbps, maximum 190 Kbps (per channel, incl. LFE).
* 48 kHz Minimum 28 Kbps, maximum 240 Kbps (per channel, incl. LFE).
* Limits: minimum of 14/22/28 Kbps per channel (8-12, 16-24, 32-48 kHz)
* maximum of 32/86/190/240 Kbps per channel (8-12, 16-24, 32, 44.1-48 kHz)
*
* lame
* ----
* supported samplerates: 8 - 48 kHz
* lame_init_params() allows the following bitrates:
* 12 kHz Minimum 8 Kbps, maximum 64 Kbps
* 24 kHz Minimum 8 Kbps, maximum 160 Kbps
* 48 kHz Minimum 32 Kbps, maximum 320 Kbps
* Limits: minimum of 8/8/32 Kbps (8-12, 16-24, 32-48 kHz)
* maximum of 64/160/320 Kbps (8-12, 16-24, 32-48 kHz)
*
* ffac3
* -----
* supported samplerates: 32 - 48 kHz (< 32 kHz disabled for compatibility reasons)
* Dolby's encoder has a min. of 224 Kbps for 5 full-bandwidth channels (5.0, 5.1)
* The maximum AC3 bitrate is 640 Kbps
* Limits: minimum of 224/5 Kbps per full-bandwidth channel, maximum of 640 Kbps
*
* ffeac3
* ------
* supported samplerates: 32 - 48 kHz (< 32 kHz not supported by libav encoder)
* Dolby's encoder has a min. of 224 Kbps for 5 full-bandwidth channels (5.0, 5.1)
* The maximum bitrate is 128 bits per sample per second
* Limits: minimum of 224/5 Kbps per full-bandwidth channel
* maximum of 128/1000 * samplerate Kbps
*
* ca_aac
* ------
* supported samplerates: 8 - 48 kHz
* Core Audio API provides a range of allowed bitrates:
* 8 kHz 8 - 24 16 - 48 40 - 112 48 - 144 56 - 160
* 12 kHz 12 - 32 24 - 64 64 - 160 72 - 192 96 - 224
* 16 kHz 12 - 48 24 - 96 64 - 224 72 - 288 96 - 320
* 24 kHz 16 - 64 32 - 128 80 - 320 96 - 384 112 - 448
* 32 kHz 24 - 96 48 - 192 128 - 448 144 - 576 192 - 640
* 48 kHz 32 - 256 64 - 320 160 - 768 192 - 960 224 - 960
* Limits:
* 8 kHz -> minimum of 8 Kbps and maximum of 24 Kbps per full-bandwidth channel
* 12 kHz -> minimum of 12 Kbps and maximum of 32 Kbps per full-bandwidth channel
* 16 kHz -> minimum of 12 Kbps and maximum of 48 Kbps per full-bandwidth channel
* 24 kHz -> minimum of 16 Kbps and maximum of 64 Kbps per full-bandwidth channel
* 32 kHz -> minimum of 24 Kbps and maximum of 96 Kbps per full-bandwidth channel
* 48 kHz -> minimum of 32 Kbps and maximum of 160 Kbps per full-bandwidth channel
* 48 kHz -> maximum of +96 Kbps for Mono
* Note: encCoreAudioInit() will sanitize any mistake made here.
*
* ca_haac
* -------
* supported samplerates: 32 - 48 kHz
* Core Audio API provides a range of allowed bitrates:
* 32 kHz 12 - 40 24 - 80 64 - 192 N/A 96 - 256
* 48 kHz 16 - 40 32 - 80 80 - 192 N/A 112 - 256
* Limits: minimum of 12 Kbps per full-bandwidth channel (<= 32 kHz)
* minimum of 16 Kbps per full-bandwidth channel ( > 32 kHz)
* maximum of 40 Kbps per full-bandwidth channel
* Note: encCoreAudioInit() will sanitize any mistake made here.
*
* fdk_aac
* -------
* supported samplerates: 8 - 48 kHz
* libfdk limits the bitrate to the following values:
* 8 kHz 48 96 240
* 12 kHz 72 144 360
* 16 kHz 96 192 480
* 24 kHz 144 288 720
* 32 kHz 192 384 960
* 48 kHz 288 576 1440
* Limits: minimum of samplerate * 2/3 Kbps per full-bandwidth channel (see ca_aac)
* maximum of samplerate * 6.0 Kbps per full-bandwidth channel
*
* fdk_haac
* --------
* supported samplerates: 16 - 48 kHz
* libfdk limits the bitrate to the following values:
* 16 kHz 8 - 48 16 - 96 45 - 199
* 24 kHz 8 - 63 16 - 127 45 - 266
* 32 kHz 8 - 63 16 - 127 45 - 266
* 48 kHz 12 - 63 16 - 127 50 - 266
* Limits: minimum of 12 Kbps per full-bandwidth channel (<= 32 kHz) (see ca_haac)
* minimum of 16 Kbps per full-bandwidth channel ( > 32 kHz) (see ca_haac)
* maximum of 48, 96 or 192 Kbps (1.0, 2.0, 5.1) (<= 16 kHz)
* maximum of 64, 128 or 256 Kbps (1.0, 2.0, 5.1) ( > 16 kHz)
*/
void hb_audio_bitrate_get_limits(uint32_t codec, int samplerate, int mixdown,
int *low, int *high)
{
/*
* samplerate == 0 means "auto" (same as source) and the UIs know the source
* samplerate -- except where there isn't a source (audio defaults panel);
* but we have enough info to return the global bitrate limits for this
* mixdown, since the first/last samplerate are known to us and non-zero.
*/
if (samplerate == 0)
{
int dummy;
hb_audio_bitrate_get_limits(codec, hb_audio_rates_first_item->rate, mixdown, low, &dummy);
hb_audio_bitrate_get_limits(codec, hb_audio_rates_last_item->rate, mixdown, &dummy, high);
return;
}
/* samplerate, sr_shift */
int sr_shift;
samplerate = hb_audio_samplerate_find_closest(samplerate, codec);
sr_shift = hb_audio_samplerate_get_sr_shift(samplerate);
/* LFE, full-bandwidth channels */
int lfe_count, nchannels;
lfe_count = hb_mixdown_get_low_freq_channel_count(mixdown);
nchannels = hb_mixdown_get_discrete_channel_count(mixdown) - lfe_count;
switch (codec)
{
// Bitrates don't apply to "lossless" audio
case HB_ACODEC_FFFLAC:
case HB_ACODEC_FFFLAC24:
*low = *high = -1;
return;
case HB_ACODEC_AC3:
*low = 224 * nchannels / 5;
*high = 640;
break;
case HB_ACODEC_FFEAC3:
*low = 224 * nchannels / 5;
*high = 128 * samplerate / 1000;
break;
case HB_ACODEC_CA_AAC:
{
switch (samplerate)
{
case 8000:
*low = nchannels * 8;
*high = nchannels * 24;
break;
case 11025:
case 12000:
*low = nchannels * 12;
*high = nchannels * 32;
break;
case 16000:
*low = nchannels * 12;
*high = nchannels * 48;
break;
case 22050:
case 24000:
*low = nchannels * 16;
*high = nchannels * 64;
break;
case 32000:
*low = nchannels * 24;
*high = nchannels * 96;
break;
case 44100:
case 48000:
default:
*low = nchannels * 32;
*high = nchannels * (160 + (96 * (nchannels == 1)));
break;
} break;
}
case HB_ACODEC_CA_HAAC:
*low = nchannels * (12 + (4 * (samplerate >= 44100)));
*high = nchannels * 40;
break;
case HB_ACODEC_FDK_AAC:
*low = nchannels * samplerate * 2 / 3000;
*high = nchannels * samplerate * 6 / 1000;
break;
case HB_ACODEC_FDK_HAAC:
*low = (nchannels * (12 + (4 * (samplerate >= 44100))));
*high = (nchannels - (nchannels > 2)) * (48 +
(16 *
(samplerate >= 22050)));
break;
case HB_ACODEC_FFAAC:
*low = ((nchannels + lfe_count) * 32);
*high = ((nchannels + lfe_count) *
((192 + (64 * ((samplerate << sr_shift) >= 44100)))
>> sr_shift));
break;
case HB_ACODEC_LAME:
*low = 8 + (24 * (sr_shift < 1));
*high = 64 + (96 * (sr_shift < 2)) + (160 * (sr_shift < 1));
break;
case HB_ACODEC_VORBIS:
*low = (nchannels + lfe_count) * (14 +
(8 * (sr_shift < 2)) +
(6 * (sr_shift < 1)));
*high = (nchannels + lfe_count) * (32 +
( 54 * (sr_shift < 2)) +
(104 * (sr_shift < 1)) +
( 50 * (samplerate >= 44100)));
break;
case HB_ACODEC_OPUS:
*low = (nchannels + lfe_count) * 6;
*high = (nchannels + lfe_count) * 256;
break;
// Bitrates don't apply to passthrough audio, but may apply if we
// fall back to an encoder when the source can't be passed through.
default:
*low = hb_audio_bitrates_first_item->rate;
*high = hb_audio_bitrates_last_item ->rate;
break;
}
// sanitize max. bitrate
if (*high < hb_audio_bitrates_first_item->rate)
*high = hb_audio_bitrates_first_item->rate;
if (*high > hb_audio_bitrates_last_item ->rate)
*high = hb_audio_bitrates_last_item ->rate;
}
const hb_rate_t* hb_audio_bitrate_get_next(const hb_rate_t *last)
{
if (last == NULL)
{
return hb_audio_bitrates_first_item;
}
return ((hb_rate_internal_t*)last)->next;
}
// Get limits and hints for the UIs.
//
// granularity sets the minimum step increments that should be used
// (it's ok to round up to some nice multiple if you like)
//
// direction says whether 'low' limit is highest or lowest
// quality (direction 0 == lowest value is worst quality)
void hb_video_quality_get_limits(uint32_t codec, float *low, float *high,
float *granularity, int *direction)
{
#ifdef USE_QSV
if (codec & HB_VCODEC_QSV_MASK)
{
return hb_qsv_video_quality_get_limits(codec, low, high, granularity,
direction);
}
#endif
switch (codec)
{
/*
* H.264/H.265: *low
* = 51 - (QP_MAX_SPEC)
* = 51 - (51 + QP_BD_OFFSET)
* = 0 - (QP_BD_OFFSET)
* = 0 - (6*(BIT_DEPTH-8)) (libx264)
* = 0 - (6*(X265_DEPTH-8)) (libx265)
*/
case HB_VCODEC_X264_8BIT:
case HB_VCODEC_X265_8BIT:
*direction = 1;
*granularity = 0.1;
*low = 0.;
*high = 51.;
break;
case HB_VCODEC_X264_10BIT:
case HB_VCODEC_X265_10BIT:
*direction = 1;
*granularity = 0.1;
*low = -12.;
*high = 51.;
break;
case HB_VCODEC_X265_12BIT:
*direction = 1;
*granularity = 0.1;
*low = -24.;
*high = 51.;
break;
case HB_VCODEC_X265_16BIT:
*direction = 1;
*granularity = 0.1;
*low = -48.;
*high = 51.;
break;
case HB_VCODEC_THEORA:
*direction = 0;
*granularity = 1.;
*low = 0.;
*high = 63.;
break;
case HB_VCODEC_FFMPEG_VP8:
case HB_VCODEC_FFMPEG_VP9:
*direction = 1;
*granularity = 1.;
*low = 0.;
*high = 63.;
break;
case HB_VCODEC_FFMPEG_MPEG2:
case HB_VCODEC_FFMPEG_MPEG4:
default:
*direction = 1;
*granularity = 1.;
*low = 1.;
*high = 31.;
break;
}
}
const char* hb_video_quality_get_name(uint32_t codec)
{
#ifdef USE_QSV
if (codec & HB_VCODEC_QSV_MASK)
{
return hb_qsv_video_quality_get_name(codec);
}
#endif
switch (codec)
{
case HB_VCODEC_X264_8BIT:
case HB_VCODEC_X264_10BIT:
case HB_VCODEC_X265_8BIT:
case HB_VCODEC_X265_10BIT:
case HB_VCODEC_X265_12BIT:
case HB_VCODEC_X265_16BIT:
return "RF";
case HB_VCODEC_FFMPEG_VP8:
case HB_VCODEC_FFMPEG_VP9:
return "CQ";
default:
return "QP";
}
}
int hb_video_encoder_get_depth(int encoder)
{
switch (encoder)
{
#ifdef USE_QSV
case HB_VCODEC_QSV_H265_10BIT:
#endif
case HB_VCODEC_X264_10BIT:
case HB_VCODEC_X265_10BIT:
return 10;
case HB_VCODEC_X265_12BIT:
return 12;
case HB_VCODEC_X265_16BIT:
return 16;
default:
return 8;
}
}
const char* const* hb_video_encoder_get_presets(int encoder)
{
#ifdef USE_QSV
if (encoder & HB_VCODEC_QSV_MASK)
{
return hb_qsv_preset_get_names();
}
#endif
if (encoder & HB_VCODEC_FFMPEG_MASK)
{
return hb_av_preset_get_names(encoder);
}
switch (encoder)
{
case HB_VCODEC_X264_8BIT:
case HB_VCODEC_X264_10BIT:
return x264_preset_names;
#ifdef USE_X265
case HB_VCODEC_X265_8BIT:
case HB_VCODEC_X265_10BIT:
case HB_VCODEC_X265_12BIT:
case HB_VCODEC_X265_16BIT:
return x265_preset_names;
#endif
default:
return NULL;
}
}
const char* const* hb_video_encoder_get_tunes(int encoder)
{
switch (encoder)
{
case HB_VCODEC_X264_8BIT:
case HB_VCODEC_X264_10BIT:
return x264_tune_names;
#ifdef USE_X265
case HB_VCODEC_X265_8BIT:
case HB_VCODEC_X265_10BIT:
case HB_VCODEC_X265_12BIT:
case HB_VCODEC_X265_16BIT:
return x265_tune_names;
#endif
default:
return NULL;
}
}
const char* const* hb_video_encoder_get_profiles(int encoder)
{
#ifdef USE_QSV
if (encoder & HB_VCODEC_QSV_MASK)
{
return hb_qsv_profile_get_names(encoder);
}
#endif
switch (encoder)
{
case HB_VCODEC_X264_8BIT:
return hb_h264_profile_names_8bit;
case HB_VCODEC_X264_10BIT:
return hb_h264_profile_names_10bit;
case HB_VCODEC_X265_8BIT:
return hb_h265_profile_names_8bit;
case HB_VCODEC_X265_10BIT:
return hb_h265_profile_names_10bit;
case HB_VCODEC_X265_12BIT:
return hb_h265_profile_names_12bit;
case HB_VCODEC_X265_16BIT:
return hb_h265_profile_names_16bit;
default:
return NULL;
}
}
const char* const* hb_video_encoder_get_levels(int encoder)
{
#ifdef USE_QSV
if (encoder & HB_VCODEC_QSV_MASK)
{
return hb_qsv_level_get_names(encoder);
}
#endif
switch (encoder)
{
case HB_VCODEC_X264_8BIT:
case HB_VCODEC_X264_10BIT:
return hb_h264_level_names;
default:
return NULL;
}
}
// Get limits and hints for the UIs.
//
// granularity sets the minimum step increments that should be used
// (it's ok to round up to some nice multiple if you like)
//
// direction says whether 'low' limit is highest or lowest
// quality (direction 0 == lowest value is worst quality)
void hb_audio_quality_get_limits(uint32_t codec, float *low, float *high,
float *granularity, int *direction)
{
switch (codec)
{
case HB_ACODEC_FFAAC:
*direction = 0;
*granularity = 1.;
*low = 1.;
*high = 10.;
break;
case HB_ACODEC_FDK_HAAC:
case HB_ACODEC_FDK_AAC:
*direction = 0;
*granularity = 1.;
*low = 1.;
*high = 5.;
break;
case HB_ACODEC_LAME:
*direction = 1;
*granularity = 0.5;
*low = 0.;
*high = 10.;
break;
case HB_ACODEC_VORBIS:
*direction = 0;
*granularity = 0.5;
*low = -2.;
*high = 10.;
break;
case HB_ACODEC_CA_AAC:
*direction = 0;
*granularity = 9.;
*low = 1.;
*high = 127.;
break;
default:
*direction = 0;
*granularity = 1.;
*low = *high = HB_INVALID_AUDIO_QUALITY;
break;
}
}
float hb_audio_quality_get_best(uint32_t codec, float quality)
{
int direction;
float low, high, granularity;
hb_audio_quality_get_limits(codec, &low, &high, &granularity, &direction);
if (quality > high)
quality = high;
if (quality < low)
quality = low;
return quality;
}
float hb_audio_quality_get_default(uint32_t codec)
{
switch (codec)
{
case HB_ACODEC_FFAAC:
return 5.;
case HB_ACODEC_FDK_HAAC:
case HB_ACODEC_FDK_AAC:
return 3.;
case HB_ACODEC_LAME:
return 2.;
case HB_ACODEC_VORBIS:
return 5.;
case HB_ACODEC_CA_AAC:
return 91.;
default:
return HB_INVALID_AUDIO_QUALITY;
}
}
// Get limits and hints for the UIs.
//
// granularity sets the minimum step increments that should be used
// (it's ok to round up to some nice multiple if you like)
//
// direction says whether 'low' limit is highest or lowest
// compression level (direction 0 == lowest value is worst compression level)
void hb_audio_compression_get_limits(uint32_t codec, float *low, float *high,
float *granularity, int *direction)
{
switch (codec)
{
case HB_ACODEC_FFFLAC:
case HB_ACODEC_FFFLAC24:
*direction = 0;
*granularity = 1.;
*high = 12.;
*low = 0.;
break;
case HB_ACODEC_LAME:
*direction = 1;
*granularity = 1.;
*high = 9.;
*low = 0.;
break;
case HB_ACODEC_OPUS:
*direction = 0;
*granularity = 1.;
*high = 10.;
*low = 0.;
break;
default:
*direction = 0;
*granularity = 1.;
*low = *high = -1.;
break;
}
}
float hb_audio_compression_get_best(uint32_t codec, float compression)
{
int direction;
float low, high, granularity;
hb_audio_compression_get_limits(codec, &low, &high, &granularity, &direction);
if( compression > high )
compression = high;
if( compression < low )
compression = low;
return compression;
}
float hb_audio_compression_get_default(uint32_t codec)
{
switch (codec)
{
case HB_ACODEC_FFFLAC:
case HB_ACODEC_FFFLAC24:
return 5.;
case HB_ACODEC_LAME:
return 2.;
case HB_ACODEC_OPUS:
return 10.;
default:
return -1.;
}
}
int hb_audio_dither_get_default()
{
// "auto"
return hb_audio_dithers_first_item->method;
}
int hb_audio_dither_get_default_method()
{
/*
* input could be s16 (possibly already dithered) converted to flt, so
* let's use a "low-risk" dither algorithm (standard triangular).
*/
return AV_RESAMPLE_DITHER_TRIANGULAR;
}
int hb_audio_dither_is_supported(uint32_t codec)
{
// encoder's input sample format must be s16(p)
switch (codec)
{
case HB_ACODEC_FFFLAC:
case HB_ACODEC_FDK_AAC:
case HB_ACODEC_FDK_HAAC:
return 1;
default:
return 0;
}
}
int hb_audio_dither_get_from_name(const char *name)
{
if (name == NULL || *name == '\0')
goto fail;
int i;
for ( i = 0; i < hb_audio_dithers_count; i++)
{
if (!strcasecmp(hb_audio_dithers[i].item.short_name, name) ||
!strcasecmp(hb_audio_dithers[i].item.description, name))
{
return hb_audio_dithers[i].item.method;
}
}
fail:
return hb_audio_dither_get_default();
}
const char* hb_audio_dither_get_description(int method)
{
if (method < hb_audio_dithers_first_item->method ||
method > hb_audio_dithers_last_item ->method)
goto fail;
const hb_dither_t *audio_dither = NULL;
while ((audio_dither = hb_audio_dither_get_next(audio_dither)) != NULL)
{
if (audio_dither->method == method)
{
return audio_dither->description;
}
}
fail:
return NULL;
}
const hb_dither_t* hb_audio_dither_get_next(const hb_dither_t *last)
{
if (last == NULL)
{
return hb_audio_dithers_first_item;
}
return ((hb_dither_internal_t*)last)->next;
}
static int mixdown_get_opus_coupled_stream_count(int mixdown)
{
switch (mixdown)
{
case HB_AMIXDOWN_7POINT1:
case HB_AMIXDOWN_6POINT1:
return 3;
case HB_AMIXDOWN_5POINT1:
return 2;
case HB_AMIXDOWN_MONO:
case HB_AMIXDOWN_LEFT:
case HB_AMIXDOWN_RIGHT:
return 0;
case HB_AMIXDOWN_NONE:
case HB_INVALID_AMIXDOWN:
case HB_AMIXDOWN_5_2_LFE:
// The 5F/2R/LFE configuration is currently not supported by Opus,
// so don't set coupled streams.
return 0;
default:
return 1;
}
}
int hb_mixdown_is_supported(int mixdown, uint32_t codec, uint64_t layout)
{
return (hb_mixdown_has_codec_support(mixdown, codec) &&
hb_mixdown_has_remix_support(mixdown, layout));
}
int hb_mixdown_has_codec_support(int mixdown, uint32_t codec)
{
// Passthru, only "None" mixdown is supported
if (codec & HB_ACODEC_PASS_FLAG)
return (mixdown == HB_AMIXDOWN_NONE);
// Not passthru, "None" mixdown never supported
if (mixdown == HB_AMIXDOWN_NONE)
return 0;
switch (codec)
{
case HB_ACODEC_VORBIS:
case HB_ACODEC_FFFLAC:
case HB_ACODEC_FFFLAC24:
case HB_ACODEC_OPUS:
return (mixdown <= HB_AMIXDOWN_7POINT1);
case HB_ACODEC_LAME:
return (mixdown <= HB_AMIXDOWN_DOLBYPLII);
case HB_ACODEC_CA_AAC:
case HB_ACODEC_CA_HAAC:
return ((mixdown <= HB_AMIXDOWN_5POINT1) ||
(mixdown == HB_AMIXDOWN_5_2_LFE));
default:
return (mixdown <= HB_AMIXDOWN_5POINT1);
}
}
int hb_mixdown_has_remix_support(int mixdown, uint64_t layout)
{
/*
* Where there isn't a source (e.g. audio defaults panel), we have no input
* layout; assume remix support, as the mixdown will be sanitized later on.
*/
if (!layout)
{
return 1;
}
switch (mixdown)
{
// stereo + front left/right of center
case HB_AMIXDOWN_5_2_LFE:
return ((layout & AV_CH_FRONT_LEFT_OF_CENTER) &&
(layout & AV_CH_FRONT_RIGHT_OF_CENTER) &&
(layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO);
// 7.0 or better
case HB_AMIXDOWN_7POINT1:
return ((layout & AV_CH_LAYOUT_7POINT0) == AV_CH_LAYOUT_7POINT0);
// 6.0 or better
case HB_AMIXDOWN_6POINT1:
return ((layout & AV_CH_LAYOUT_7POINT0) == AV_CH_LAYOUT_7POINT0 ||
(layout & AV_CH_LAYOUT_6POINT0) == AV_CH_LAYOUT_6POINT0 ||
(layout & AV_CH_LAYOUT_HEXAGONAL) == AV_CH_LAYOUT_HEXAGONAL);
// stereo + either of front center, side or back left/right, back center
case HB_AMIXDOWN_5POINT1:
return ((layout & AV_CH_LAYOUT_2_1) == AV_CH_LAYOUT_2_1 ||
(layout & AV_CH_LAYOUT_2_2) == AV_CH_LAYOUT_2_2 ||
(layout & AV_CH_LAYOUT_QUAD) == AV_CH_LAYOUT_QUAD ||
(layout & AV_CH_LAYOUT_SURROUND) == AV_CH_LAYOUT_SURROUND);
// stereo + either of side or back left/right, back center
// also, allow Dolby Surrounbd output if the input is already Dolby
case HB_AMIXDOWN_DOLBY:
case HB_AMIXDOWN_DOLBYPLII:
return ((layout & AV_CH_LAYOUT_2_1) == AV_CH_LAYOUT_2_1 ||
(layout & AV_CH_LAYOUT_2_2) == AV_CH_LAYOUT_2_2 ||
(layout & AV_CH_LAYOUT_QUAD) == AV_CH_LAYOUT_QUAD ||
(layout == AV_CH_LAYOUT_STEREO_DOWNMIX &&
mixdown == HB_AMIXDOWN_DOLBY));
// more than 1 channel
case HB_AMIXDOWN_STEREO:
return (av_get_channel_layout_nb_channels(layout) > 1);
// regular stereo (not Dolby)
case HB_AMIXDOWN_LEFT:
case HB_AMIXDOWN_RIGHT:
return (layout == AV_CH_LAYOUT_STEREO);
// mono remix always supported
// HB_AMIXDOWN_NONE always supported (for Passthru)
case HB_AMIXDOWN_MONO:
case HB_AMIXDOWN_NONE:
return 1;
// unknown mixdown, should never happen
default:
return 0;
}
}
int hb_mixdown_get_discrete_channel_count(int amixdown)
{
switch (amixdown)
{
case HB_AMIXDOWN_5_2_LFE:
case HB_AMIXDOWN_7POINT1:
return 8;
case HB_AMIXDOWN_6POINT1:
return 7;
case HB_AMIXDOWN_5POINT1:
return 6;
case HB_AMIXDOWN_MONO:
case HB_AMIXDOWN_LEFT:
case HB_AMIXDOWN_RIGHT:
return 1;
case HB_AMIXDOWN_NONE:
return 0;
default:
return 2;
}
}
int hb_mixdown_get_low_freq_channel_count(int amixdown)
{
switch (amixdown)
{
case HB_AMIXDOWN_5POINT1:
case HB_AMIXDOWN_6POINT1:
case HB_AMIXDOWN_7POINT1:
case HB_AMIXDOWN_5_2_LFE:
return 1;
default:
return 0;
}
}
int hb_mixdown_get_best(uint32_t codec, uint64_t layout, int mixdown)
{
// Passthru, only "None" mixdown is supported
if (codec & HB_ACODEC_PASS_FLAG)
return HB_AMIXDOWN_NONE;
int best_mixdown = HB_INVALID_AMIXDOWN;
const hb_mixdown_t *audio_mixdown = hb_mixdown_get_next(NULL);
// test all non-None mixdowns while the value is <= the requested mixdown
// HB_INVALID_AMIXDOWN means the highest supported mixdown was requested
while ((audio_mixdown = hb_mixdown_get_next(audio_mixdown)) != NULL)
{
if ((mixdown == HB_INVALID_AMIXDOWN || audio_mixdown->amixdown <= mixdown) &&
(hb_mixdown_is_supported(audio_mixdown->amixdown, codec, layout)))
{
best_mixdown = audio_mixdown->amixdown;
}
}
return best_mixdown;
}
int hb_mixdown_get_default(uint32_t codec, uint64_t layout)
{
int mixdown;
switch (codec)
{
// the FLAC encoder defaults to the best mixdown up to 7.1
case HB_ACODEC_FFFLAC:
case HB_ACODEC_FFFLAC24:
case HB_ACODEC_OPUS:
mixdown = HB_AMIXDOWN_7POINT1;
break;
// the (E-)AC-3 encoder defaults to the best mixdown up to 5.1
case HB_ACODEC_AC3:
case HB_ACODEC_FFEAC3:
mixdown = HB_AMIXDOWN_5POINT1;
break;
// other encoders default to the best mixdown up to DPLII
default:
mixdown = HB_AMIXDOWN_DOLBYPLII;
break;
}
// return the best available mixdown up to the selected default
return hb_mixdown_get_best(codec, layout, mixdown);
}
hb_mixdown_t* hb_mixdown_get_from_mixdown(int mixdown)
{
int i;
for (i = 0; i < hb_audio_mixdowns_count; i++)
{
if (hb_audio_mixdowns[i].item.amixdown == mixdown)
{
return &hb_audio_mixdowns[i].item;
}
}
return NULL;
}
int hb_mixdown_get_from_name(const char *name)
{
if (name == NULL || *name == '\0')
goto fail;
int i;
for (i = 0; i < hb_audio_mixdowns_count; i++)
{
if (!strcasecmp(hb_audio_mixdowns[i].item.name, name) ||
!strcasecmp(hb_audio_mixdowns[i].item.short_name, name))
{
return hb_audio_mixdowns[i].item.amixdown;
}
}
fail:
return HB_INVALID_AMIXDOWN;
}
const char* hb_mixdown_get_name(int mixdown)
{
if (mixdown < hb_audio_mixdowns_first_item->amixdown ||
mixdown > hb_audio_mixdowns_last_item ->amixdown)
goto fail;
const hb_mixdown_t *audio_mixdown = NULL;
while ((audio_mixdown = hb_mixdown_get_next(audio_mixdown)) != NULL)
{
if (audio_mixdown->amixdown == mixdown)
{
return audio_mixdown->name;
}
}
fail:
return NULL;
}
const char* hb_mixdown_get_short_name(int mixdown)
{
if (mixdown < hb_audio_mixdowns_first_item->amixdown ||
mixdown > hb_audio_mixdowns_last_item ->amixdown)
goto fail;
const hb_mixdown_t *audio_mixdown = NULL;
while ((audio_mixdown = hb_mixdown_get_next(audio_mixdown)) != NULL)
{
if (audio_mixdown->amixdown == mixdown)
{
return audio_mixdown->short_name;
}
}
fail:
return NULL;
}
const char* hb_mixdown_sanitize_name(const char *name)
{
return hb_mixdown_get_name(hb_mixdown_get_from_name(name));
}
const hb_mixdown_t* hb_mixdown_get_next(const hb_mixdown_t *last)
{
if (last == NULL)
{
return hb_audio_mixdowns_first_item;
}
return ((hb_mixdown_internal_t*)last)->next;
}
void hb_layout_get_name(char * name, int size, int64_t layout)
{
av_get_channel_layout_string(name, size, 0, layout);
}
int hb_layout_get_discrete_channel_count(int64_t layout)
{
return av_get_channel_layout_nb_channels(layout);
}
int hb_layout_get_low_freq_channel_count(int64_t layout)
{
return !!(layout & AV_CH_LOW_FREQUENCY) +
!!(layout & AV_CH_LOW_FREQUENCY_2);
}
int hb_video_encoder_get_default(int muxer)
{
if (!(muxer & HB_MUX_MASK))
goto fail;
const hb_encoder_t *video_encoder = NULL;
while ((video_encoder = hb_video_encoder_get_next(video_encoder)) != NULL)
{
if (video_encoder->muxers & muxer)
{
return video_encoder->codec;
}
}
fail:
return HB_VCODEC_INVALID;
}
hb_encoder_t * hb_video_encoder_get_from_codec(int codec)
{
int i;
for (i = 0; i < hb_video_encoders_count; i++)
{
if (hb_video_encoders[i].item.codec == codec)
{
return &hb_video_encoders[i].item;
}
}
return NULL;
}
int hb_video_encoder_get_from_name(const char *name)
{
if (name == NULL || *name == '\0')
goto fail;
int i;
for (i = 0; i < hb_video_encoders_count; i++)
{
if (!strcasecmp(hb_video_encoders[i].item.name, name) ||
!strcasecmp(hb_video_encoders[i].item.short_name, name))
{
return hb_video_encoders[i].item.codec;
}
}
fail:
return HB_VCODEC_INVALID;
}
const char* hb_video_encoder_get_name(int encoder)
{
if (!(encoder & HB_VCODEC_MASK))
goto fail;
const hb_encoder_t *video_encoder = NULL;
while ((video_encoder = hb_video_encoder_get_next(video_encoder)) != NULL)
{
if (video_encoder->codec == encoder)
{
return video_encoder->name;
}
}
fail:
return NULL;
}
const char* hb_video_encoder_get_short_name(int encoder)
{
if (!(encoder & HB_VCODEC_MASK))
goto fail;
const hb_encoder_t *video_encoder = NULL;
while ((video_encoder = hb_video_encoder_get_next(video_encoder)) != NULL)
{
if (video_encoder->codec == encoder)
{
return video_encoder->short_name;
}
}
fail:
return NULL;
}
const char* hb_video_encoder_get_long_name(int encoder)
{
if (!(encoder & HB_VCODEC_MASK))
goto fail;
const hb_encoder_t *video_encoder = NULL;
while ((video_encoder = hb_video_encoder_get_next(video_encoder)) != NULL)
{
if (video_encoder->codec == encoder)
{
return video_encoder->long_name;
}
}
fail:
return NULL;
}
const char* hb_video_encoder_sanitize_name(const char *name)
{
return hb_video_encoder_get_name(hb_video_encoder_get_from_name(name));
}
const hb_encoder_t* hb_video_encoder_get_next(const hb_encoder_t *last)
{
if (last == NULL)
{
return hb_video_encoders_first_item;
}
return ((hb_encoder_internal_t*)last)->next;
}
// for a valid passthru, return the matching encoder for that codec (if any),
// else return -1 (i.e. drop the track)
int hb_audio_encoder_get_fallback_for_passthru(int passthru)
{
int gid;
const hb_encoder_t *audio_encoder = NULL;
switch (passthru)
{
case HB_ACODEC_AAC_PASS:
gid = HB_GID_ACODEC_AAC;
break;
case HB_ACODEC_AC3_PASS:
gid = HB_GID_ACODEC_AC3;
break;
case HB_ACODEC_EAC3_PASS:
gid = HB_GID_ACODEC_EAC3;
break;
case HB_ACODEC_FLAC_PASS:
gid = HB_GID_ACODEC_FLAC;
break;
case HB_ACODEC_MP3_PASS:
gid = HB_GID_ACODEC_MP3;
break;
default:
return HB_ACODEC_INVALID;
break;
}
while ((audio_encoder = hb_audio_encoder_get_next(audio_encoder)) != NULL)
{
if (((hb_encoder_internal_t*)audio_encoder)->gid == gid)
{
return audio_encoder->codec;
}
}
// passthru tracks are often the second audio from the same source track
// if we don't have an encoder matching the passthru codec, return INVALID
// dropping the track, as well as ensuring that there is at least one
// audio track in the output is then up to the UIs
return HB_ACODEC_INVALID;
}
int hb_audio_encoder_get_default(int muxer)
{
if (!(muxer & HB_MUX_MASK))
goto fail;
int codec = 0;
const hb_encoder_t *audio_encoder = NULL;
while ((audio_encoder = hb_audio_encoder_get_next(audio_encoder)) != NULL)
{
// default encoder should not be passthru
if ((audio_encoder->muxers & muxer) &&
(audio_encoder->codec & HB_ACODEC_PASS_FLAG) == 0)
{
codec = audio_encoder->codec;
break;
}
}
// Lame is better than our low-end AAC encoders
// if the container is MKV, use the former
// AAC is still used when the container is MP4 (for better compatibility)
if (codec == HB_ACODEC_FFAAC && (muxer & HB_MUX_MASK_MKV) == muxer)
{
return HB_ACODEC_LAME;
}
else
{
return codec;
}
fail:
return HB_ACODEC_INVALID;
}
hb_encoder_t* hb_audio_encoder_get_from_codec(int codec)
{
int i;
for (i = 0; i < hb_audio_encoders_count; i++)
{
if (hb_audio_encoders[i].item.codec == codec)
{
return &hb_audio_encoders[i].item;
}
}
return NULL;
}
int hb_audio_encoder_get_from_name(const char *name)
{
if (name == NULL || *name == '\0')
goto fail;
int i;
for (i = 0; i < hb_audio_encoders_count; i++)
{
if (!strcasecmp(hb_audio_encoders[i].item.name, name) ||
!strcasecmp(hb_audio_encoders[i].item.short_name, name))
{
return hb_audio_encoders[i].item.codec;
}
}
fail:
return HB_ACODEC_INVALID;
}
const char* hb_audio_encoder_get_name(int encoder)
{
if (!(encoder & HB_ACODEC_ANY))
goto fail;
const hb_encoder_t *audio_encoder = NULL;
while ((audio_encoder = hb_audio_encoder_get_next(audio_encoder)) != NULL)
{
if (audio_encoder->codec == encoder)
{
return audio_encoder->name;
}
}
fail:
return NULL;
}
const char* hb_audio_encoder_get_short_name(int encoder)
{
if (!(encoder & HB_ACODEC_ANY))
goto fail;
const hb_encoder_t *audio_encoder = NULL;
while ((audio_encoder = hb_audio_encoder_get_next(audio_encoder)) != NULL)
{
if (audio_encoder->codec == encoder)
{
return audio_encoder->short_name;
}
}
fail:
return NULL;
}
const char* hb_audio_encoder_get_long_name(int encoder)
{
if (!(encoder & HB_ACODEC_ANY))
goto fail;
const hb_encoder_t *audio_encoder = NULL;
while ((audio_encoder = hb_audio_encoder_get_next(audio_encoder)) != NULL)
{
if (audio_encoder->codec == encoder)
{
return audio_encoder->long_name;
}
}
fail:
return NULL;
}
const char* hb_audio_encoder_sanitize_name(const char *name)
{
return hb_audio_encoder_get_name(hb_audio_encoder_get_from_name(name));
}
const hb_encoder_t* hb_audio_encoder_get_next(const hb_encoder_t *last)
{
if (last == NULL)
{
return hb_audio_encoders_first_item;
}
return ((hb_encoder_internal_t*)last)->next;
}
void hb_autopassthru_apply_settings(hb_job_t *job)
{
hb_audio_t *audio;
int i, already_printed;
for (i = already_printed = 0; i < hb_list_count(job->list_audio);)
{
audio = hb_list_item(job->list_audio, i);
if (audio->config.out.codec == HB_ACODEC_AUTO_PASS)
{
if (!already_printed)
hb_autopassthru_print_settings(job);
already_printed = 1;
audio->config.out.codec = hb_autopassthru_get_encoder(audio->config.in.codec,
job->acodec_copy_mask,
job->acodec_fallback,
job->mux);
if (audio->config.out.codec == HB_ACODEC_NONE ||
audio->config.out.codec == HB_ACODEC_INVALID)
{
hb_log("Auto Passthru: passthru not possible and no valid fallback specified, dropping track %d",
audio->config.out.track );
hb_list_rem(job->list_audio, audio);
hb_audio_close(&audio);
continue;
}
if (!(audio->config.out.codec & HB_ACODEC_PASS_FLAG))
{
hb_log("Auto Passthru: passthru not possible for track %d, using fallback",
audio->config.out.track);
if (audio->config.out.mixdown <= 0)
{
audio->config.out.mixdown =
hb_mixdown_get_default(audio->config.out.codec,
audio->config.in.channel_layout);
}
else
{
audio->config.out.mixdown =
hb_mixdown_get_best(audio->config.out.codec,
audio->config.in.channel_layout,
audio->config.out.mixdown);
}
if (audio->config.out.samplerate <= 0)
audio->config.out.samplerate = audio->config.in.samplerate;
audio->config.out.samplerate =
hb_audio_samplerate_find_closest(
audio->config.out.samplerate, audio->config.out.codec);
int quality_not_allowed =
hb_audio_quality_get_default(audio->config.out.codec)
== HB_INVALID_AUDIO_QUALITY;
if (audio->config.out.bitrate > 0)
{
// Use best bitrate
audio->config.out.bitrate =
hb_audio_bitrate_get_best(audio->config.out.codec,
audio->config.out.bitrate,
audio->config.out.samplerate,
audio->config.out.mixdown);
}
else if (quality_not_allowed ||
audio->config.out.quality != HB_INVALID_AUDIO_QUALITY)
{
// Use default bitrate
audio->config.out.bitrate =
hb_audio_bitrate_get_default(audio->config.out.codec,
audio->config.out.samplerate,
audio->config.out.mixdown);
}
else
{
// Use best quality
audio->config.out.quality =
hb_audio_quality_get_best(audio->config.out.codec,
audio->config.out.quality);
}
if (audio->config.out.compression_level < 0)
{
audio->config.out.compression_level =
hb_audio_compression_get_default(
audio->config.out.codec);
}
else
{
audio->config.out.compression_level =
hb_audio_compression_get_best(audio->config.out.codec,
audio->config.out.compression_level);
}
}
else
{
const hb_encoder_t *audio_encoder = NULL;
while ((audio_encoder = hb_audio_encoder_get_next(audio_encoder)) != NULL)
{
if (audio_encoder->codec == audio->config.out.codec)
{
hb_log("Auto Passthru: using %s for track %d",
audio_encoder->name,
audio->config.out.track);
break;
}
}
}
}
/* Adjust output track number, in case we removed one.
* Output tracks sadly still need to be in sequential order.
* Note: out.track starts at 1, i starts at 0 */
audio->config.out.track = ++i;
}
}
void hb_autopassthru_print_settings(hb_job_t *job)
{
char *mask = NULL, *tmp;
const char *fallback = NULL;
const hb_encoder_t *audio_encoder = NULL;
while ((audio_encoder = hb_audio_encoder_get_next(audio_encoder)) != NULL)
{
if ((audio_encoder->codec & HB_ACODEC_PASS_FLAG) &&
(audio_encoder->codec != HB_ACODEC_AUTO_PASS) &&
(audio_encoder->codec & (job->acodec_copy_mask &
HB_ACODEC_PASS_MASK)))
{
if (mask != NULL)
{
tmp = hb_strncat_dup(mask, ", ", 2);
if (tmp != NULL)
{
free(mask);
mask = tmp;
}
}
// passthru name without " Passthru"
tmp = hb_strncat_dup(mask, audio_encoder->name,
strlen(audio_encoder->name) - 9);
if (tmp != NULL)
{
free(mask);
mask = tmp;
}
}
else if ((audio_encoder->codec & HB_ACODEC_PASS_FLAG) == 0 &&
(audio_encoder->codec == job->acodec_fallback))
{
fallback = audio_encoder->name;
}
}
if (mask == NULL)
hb_log("Auto Passthru: no codecs allowed");
else
hb_log("Auto Passthru: allowed codecs are %s", mask);
if (fallback == NULL)
hb_log("Auto Passthru: no valid fallback specified");
else
hb_log("Auto Passthru: fallback is %s", fallback);
}
int hb_autopassthru_get_encoder(int in_codec, int copy_mask, int fallback,
int muxer)
{
int out_codec_result_set = 0;
int fallback_result_set = 0;
int out_codec_result = HB_ACODEC_INVALID;
int fallback_result = HB_ACODEC_INVALID;
const hb_encoder_t *audio_encoder = NULL;
int out_codec = (copy_mask & in_codec) | HB_ACODEC_PASS_FLAG;
// sanitize fallback encoder and selected passthru
// note: invalid fallbacks are caught in hb_autopassthru_apply_settings
while ((audio_encoder = hb_audio_encoder_get_next(audio_encoder)) != NULL)
{
if (!out_codec_result_set && audio_encoder->codec == out_codec)
{
out_codec_result_set = 1;
if (audio_encoder->muxers & muxer)
out_codec_result = out_codec;
}
else if (!fallback_result_set && audio_encoder->codec == fallback)
{
fallback_result_set = 1;
if ((audio_encoder->muxers & muxer) || fallback == HB_ACODEC_NONE)
fallback_result = fallback;
}
if (out_codec_result_set && fallback_result_set)
{
break;
}
}
return (out_codec_result != HB_ACODEC_INVALID) ? out_codec_result :
fallback_result;
}
const char* hb_audio_decoder_get_name(int codec, int codec_param)
{
if (codec & HB_ACODEC_FF_MASK)
{
AVCodec * codec;
codec = avcodec_find_decoder(codec_param);
if (codec != NULL)
{
return codec->name;
}
}
else
{
switch (codec)
{
case HB_ACODEC_LPCM:
return "pcm_dvd";
default:
break;
}
}
return "unknown";
}
hb_container_t* hb_container_get_from_format(int format)
{
int i;
for (i = 0; i < hb_containers_count; i++)
{
if (hb_containers[i].item.format == format)
{
return &hb_containers[i].item;
}
}
return NULL;
}
int hb_container_get_from_name(const char *name)
{
if (name == NULL || *name == '\0')
goto fail;
int i;
for (i = 0; i < hb_containers_count; i++)
{
if (!strcasecmp(hb_containers[i].item.name, name) ||
!strcasecmp(hb_containers[i].item.short_name, name))
{
return hb_containers[i].item.format;
}
}
fail:
return HB_MUX_INVALID;
}
int hb_container_get_from_extension(const char *extension)
{
if (extension == NULL || *extension == '\0')
goto fail;
int i;
for (i = 0; i < hb_containers_count; i++)
{
if (!strcasecmp(hb_containers[i].item.default_extension, extension))
{
return hb_containers[i].item.format;
}
}
fail:
return HB_MUX_INVALID;
}
const char* hb_container_get_name(int format)
{
if (!(format & HB_MUX_MASK))
goto fail;
const hb_container_t *container = NULL;
while ((container = hb_container_get_next(container)) != NULL)
{
if (container->format == format)
{
return container->name;
}
}
fail:
return NULL;
}
const char* hb_container_get_short_name(int format)
{
if (!(format & HB_MUX_MASK))
goto fail;
const hb_container_t *container = NULL;
while ((container = hb_container_get_next(container)) != NULL)
{
if (container->format == format)
{
return container->short_name;
}
}
fail:
return NULL;
}
const char* hb_container_get_long_name(int format)
{
if (!(format & HB_MUX_MASK))
goto fail;
const hb_container_t *container = NULL;
while ((container = hb_container_get_next(container)) != NULL)
{
if (container->format == format)
{
return container->long_name;
}
}
fail:
return NULL;
}
const char* hb_container_get_default_extension(int format)
{
if (!(format & HB_MUX_MASK))
goto fail;
const hb_container_t *container = NULL;
while ((container = hb_container_get_next(container)) != NULL)
{
if (container->format == format)
{
return container->default_extension;
}
}
fail:
return NULL;
}
const char* hb_container_sanitize_name(const char *name)
{
return hb_container_get_name(hb_container_get_from_name(name));
}
const hb_container_t* hb_container_get_next(const hb_container_t *last)
{
if (last == NULL)
{
return hb_containers_first_item;
}
return ((hb_container_internal_t*)last)->next;
}
/**********************************************************************
* hb_reduce
**********************************************************************
* Given a numerator (num) and a denominator (den), reduce them to an
* equivalent fraction and store the result in x and y.
*********************************************************************/
void hb_reduce( int *x, int *y, int num, int den )
{
// find the greatest common divisor of num & den by Euclid's algorithm
int n = num, d = den;
while ( d )
{
int t = d;
d = n % d;
n = t;
}
// at this point n is the gcd. if it's non-zero remove it from num
// and den. Otherwise just return the original values.
if ( n )
{
*x = num / n;
*y = den / n;
}
else
{
*x = num;
*y = den;
}
}
void hb_limit_rational( int *x, int *y, int num, int den, int limit )
{
hb_reduce( &num, &den, num, den );
if ( num < limit && den < limit )
{
*x = num;
*y = den;
return;
}
if ( num > den )
{
double div = (double)limit / num;
num = limit;
den *= div;
}
else
{
double div = (double)limit / den;
den = limit;
num *= div;
}
*x = num;
*y = den;
}
/**********************************************************************
* hb_reduce64
**********************************************************************
* Given a numerator (num) and a denominator (den), reduce them to an
* equivalent fraction and store the result in x and y.
*********************************************************************/
void hb_reduce64( int64_t *x, int64_t *y, int64_t num, int64_t den )
{
// find the greatest common divisor of num & den by Euclid's algorithm
int64_t n = num, d = den;
while ( d )
{
int64_t t = d;
d = n % d;
n = t;
}
// at this point n is the gcd. if it's non-zero remove it from num
// and den. Otherwise just return the original values.
if ( n )
{
num /= n;
den /= n;
}
*x = num;
*y = den;
}
void hb_limit_rational64( int64_t *x, int64_t *y, int64_t num, int64_t den, int64_t limit )
{
hb_reduce64( &num, &den, num, den );
if ( num < limit && den < limit )
{
*x = num;
*y = den;
return;
}
if ( num > den )
{
double div = (double)limit / num;
num = limit;
den *= div;
}
else
{
double div = (double)limit / den;
den = limit;
num *= div;
}
*x = num;
*y = den;
}
/**********************************************************************
* hb_buffer_list implementation
*********************************************************************/
void hb_buffer_list_append(hb_buffer_list_t *list, hb_buffer_t *buf)
{
int count = 1;
int size = 0;
hb_buffer_t *end = buf;
if (buf == NULL)
{
return;
}
// Input buffer may be a list of buffers, find the end.
size += buf->size;
while (end != NULL && end->next != NULL)
{
end = end->next;
size += end->size;
count++;
}
if (list->tail == NULL)
{
list->head = buf;
list->tail = end;
}
else
{
list->tail->next = buf;
list->tail = end;
}
list->count += count;
list->size += size;
}
void hb_buffer_list_prepend(hb_buffer_list_t *list, hb_buffer_t *buf)
{
int count = 1;
int size = 0;
hb_buffer_t *end = buf;
if (buf == NULL)
{
return;
}
// Input buffer may be a list of buffers, find the end.
size += buf->size;
while (end != NULL && end->next != NULL)
{
end = end->next;
size += end->size;
count++;
}
if (list->tail == NULL)
{
list->head = buf;
list->tail = end;
}
else
{
end->next = list->head;
list->head = buf;
}
list->count += count;
list->size += size;
}
hb_buffer_t* hb_buffer_list_rem_head(hb_buffer_list_t *list)
{
if (list == NULL)
{
return NULL;
}
hb_buffer_t *head = list->head;
if (list->head != NULL)
{
if (list->head == list->tail)
{
list->tail = NULL;
}
list->head = list->head->next;
list->count--;
list->size -= head->size;
}
if (head != NULL)
{
head->next = NULL;
}
return head;
}
hb_buffer_t* hb_buffer_list_rem_tail(hb_buffer_list_t *list)
{
if (list == NULL)
{
return NULL;
}
hb_buffer_t *tail = list->tail;
if (list->head == list->tail)
{
list->head = list->tail = NULL;
list->count = 0;
list->size = 0;
}
else if (list->tail != NULL)
{
hb_buffer_t *end = list->head;
while (end->next != list->tail)
{
end = end->next;
}
end->next = NULL;
list->tail = end;
list->count--;
list->size -= tail->size;
}
if (tail != NULL)
{
tail->next = NULL;
}
return tail;
}
hb_buffer_t* hb_buffer_list_rem(hb_buffer_list_t *list, hb_buffer_t * b)
{
hb_buffer_t * a;
if (list == NULL)
{
return NULL;
}
if (b == list->head)
{
return hb_buffer_list_rem_head(list);
}
a = list->head;
while (a != NULL && a->next != b)
{
a = a->next;
}
if (a == NULL)
{
// Buffer is not in the list
return NULL;
}
list->count--;
list->size -= b->size;
a->next = b->next;
if (list->tail == b)
{
list->tail = a;
}
b->next = NULL;
return b;
}
hb_buffer_t* hb_buffer_list_head(hb_buffer_list_t *list)
{
if (list == NULL)
{
return NULL;
}
return list->head;
}
hb_buffer_t* hb_buffer_list_tail(hb_buffer_list_t *list)
{
if (list == NULL)
{
return NULL;
}
return list->tail;
}
hb_buffer_t* hb_buffer_list_set(hb_buffer_list_t *list, hb_buffer_t *buf)
{
int count = 0;
int size = 0;
if (list == NULL)
{
return NULL;
}
hb_buffer_t *head = list->head;
hb_buffer_t *end = buf;
if (end != NULL)
{
count++;
size += end->size;
while (end->next != NULL)
{
end = end->next;
count++;
size += end->size;
}
}
list->head = buf;
list->tail = end;
list->count = count;
list->size = size;
return head;
}
hb_buffer_t* hb_buffer_list_clear(hb_buffer_list_t *list)
{
if (list == NULL)
{
return NULL;
}
hb_buffer_t *head = list->head;
list->head = list->tail = NULL;
list->count = 0;
list->size = 0;
return head;
}
void hb_buffer_list_close(hb_buffer_list_t *list)
{
hb_buffer_t *buf = hb_buffer_list_clear(list);
hb_buffer_close(&buf);
}
int hb_buffer_list_count(hb_buffer_list_t *list)
{
if (list == NULL) return 0;
return list->count;
}
int hb_buffer_list_size(hb_buffer_list_t *list)
{
return list->size;
}
/**********************************************************************
* hb_list implementation
**********************************************************************
* Basic and slow, but enough for what we need
*********************************************************************/
#define HB_LIST_DEFAULT_SIZE 20
struct hb_list_s
{
/* Pointers to items in the list */
void ** items;
/* How many (void *) allocated in 'items' */
int items_alloc;
/* How many valid pointers in 'items' */
int items_count;
};
/**********************************************************************
* hb_list_init
**********************************************************************
* Allocates an empty list ready for HB_LIST_DEFAULT_SIZE items
*********************************************************************/
hb_list_t * hb_list_init()
{
hb_list_t * l;
l = calloc( sizeof( hb_list_t ), 1 );
l->items = calloc( HB_LIST_DEFAULT_SIZE * sizeof( void * ), 1 );
l->items_alloc = HB_LIST_DEFAULT_SIZE;
return l;
}
/**********************************************************************
* hb_list_count
**********************************************************************
* Returns the number of items currently in the list
*********************************************************************/
int hb_list_count( const hb_list_t * l )
{
if (l == NULL) return 0;
return l->items_count;
}
/**********************************************************************
* hb_list_add
**********************************************************************
* Adds an item at the end of the list, making it bigger if necessary.
* Can safely be called with a NULL pointer to add, it will be ignored.
*********************************************************************/
void hb_list_add( hb_list_t * l, void * p )
{
if( !p )
{
return;
}
if( l->items_count == l->items_alloc )
{
/* We need a bigger boat */
l->items_alloc += HB_LIST_DEFAULT_SIZE;
l->items = realloc( l->items,
l->items_alloc * sizeof( void * ) );
}
l->items[l->items_count] = p;
(l->items_count)++;
}
/**********************************************************************
* hb_list_insert
**********************************************************************
* Adds an item at the specifiec position in the list, making it bigger
* if necessary.
* Can safely be called with a NULL pointer to add, it will be ignored.
*********************************************************************/
void hb_list_insert( hb_list_t * l, int pos, void * p )
{
if( !p )
{
return;
}
if( l->items_count == l->items_alloc )
{
/* We need a bigger boat */
l->items_alloc += HB_LIST_DEFAULT_SIZE;
l->items = realloc( l->items,
l->items_alloc * sizeof( void * ) );
}
if ( l->items_count != pos )
{
/* Shift all items after it sizeof( void * ) bytes earlier */
memmove( &l->items[pos+1], &l->items[pos],
( l->items_count - pos ) * sizeof( void * ) );
}
l->items[pos] = p;
(l->items_count)++;
}
/**********************************************************************
* hb_list_rem
**********************************************************************
* Remove an item from the list. Bad things will happen if called
* with a NULL pointer or if the item is not in the list.
*********************************************************************/
void hb_list_rem( hb_list_t * l, void * p )
{
int i;
/* Find the item in the list */
for( i = 0; i < l->items_count; i++ )
{
if( l->items[i] == p )
{
/* Shift all items after it sizeof( void * ) bytes earlier */
memmove( &l->items[i], &l->items[i+1],
( l->items_count - i - 1 ) * sizeof( void * ) );
(l->items_count)--;
break;
}
}
}
/**********************************************************************
* hb_list_item
**********************************************************************
* Returns item at position i, or NULL if there are not that many
* items in the list
*********************************************************************/
void * hb_list_item( const hb_list_t * l, int i )
{
if( l == NULL || i < 0 || i >= l->items_count )
{
return NULL;
}
return l->items[i];
}
/**********************************************************************
* hb_list_bytes
**********************************************************************
* Assuming all items are of type hb_buffer_t, returns the total
* number of bytes in the list
*********************************************************************/
int hb_list_bytes( hb_list_t * l )
{
hb_buffer_t * buf;
int ret;
int i;
ret = 0;
for( i = 0; i < hb_list_count( l ); i++ )
{
buf = hb_list_item( l, i );
ret += buf->size - buf->offset;
}
return ret;
}
/**********************************************************************
* hb_list_seebytes
**********************************************************************
* Assuming all items are of type hb_buffer_t, copy bytes from
* the list to , keeping the list unmodified.
*********************************************************************/
void hb_list_seebytes( hb_list_t * l, uint8_t * dst, int size )
{
hb_buffer_t * buf;
int copied;
int copying;
int i;
for( i = 0, copied = 0; copied < size; i++ )
{
buf = hb_list_item( l, i );
copying = MIN( buf->size - buf->offset, size - copied );
memcpy( &dst[copied], &buf->data[buf->offset], copying );
copied += copying;
}
}
/**********************************************************************
* hb_list_getbytes
**********************************************************************
* Assuming all items are of type hb_buffer_t, copy bytes from
* the list to . What's copied is removed from the list.
* The variable pointed by is set to the PTS of the buffer the
* first byte has been got from.
* The variable pointed by is set to the position of that byte
* in that buffer.
*********************************************************************/
void hb_list_getbytes( hb_list_t * l, uint8_t * dst, int size,
uint64_t * pts, uint64_t * pos )
{
hb_buffer_t * buf;
int copied;
int copying;
uint8_t has_pts;
/* So we won't have to deal with NULL pointers */
uint64_t dummy1, dummy2;
if( !pts ) pts = &dummy1;
if( !pos ) pos = &dummy2;
for( copied = 0, has_pts = 0; copied < size; )
{
buf = hb_list_item( l, 0 );
copying = MIN( buf->size - buf->offset, size - copied );
memcpy( &dst[copied], &buf->data[buf->offset], copying );
if( !has_pts )
{
*pts = buf->s.start;
*pos = buf->offset;
has_pts = 1;
}
buf->offset += copying;
if( buf->offset >= buf->size )
{
hb_list_rem( l, buf );
hb_buffer_close( &buf );
}
copied += copying;
}
}
/**********************************************************************
* hb_list_empty
**********************************************************************
* Assuming all items are of type hb_buffer_t, close them all and
* close the list.
*********************************************************************/
void hb_list_empty( hb_list_t ** _l )
{
hb_list_t * l = *_l;
hb_buffer_t * b;
while( ( b = hb_list_item( l, 0 ) ) )
{
hb_list_rem( l, b );
hb_buffer_close( &b );
}
hb_list_close( _l );
}
/**********************************************************************
* hb_list_close
**********************************************************************
* Free memory allocated by hb_list_init. Does NOT free contents of
* items still in the list.
*********************************************************************/
void hb_list_close( hb_list_t ** _l )
{
hb_list_t * l = *_l;
if (l == NULL)
{
return;
}
free( l->items );
free( l );
*_l = NULL;
}
int global_verbosity_level; //Necessary for hb_deep_log
/**********************************************************************
* hb_valog
**********************************************************************
* If verbose mode is one, print message with timestamp. Messages
* longer than 180 characters are stripped ;p
*********************************************************************/
void hb_valog( hb_debug_level_t level, const char * prefix, const char * log, va_list args)
{
char * string;
time_t _now;
struct tm * now;
char preamble[362];
if( global_verbosity_level < level )
{
/* Hiding message */
return;
}
/* Get the time */
_now = time( NULL );
now = localtime( &_now );
if ( prefix && *prefix )
{
// limit the prefix length
snprintf( preamble, 361, "[%02d:%02d:%02d] %s %s\n",
now->tm_hour, now->tm_min, now->tm_sec, prefix, log );
}
else
{
snprintf( preamble, 361, "[%02d:%02d:%02d] %s\n",
now->tm_hour, now->tm_min, now->tm_sec, log );
}
string = hb_strdup_vaprintf(preamble, args);
#ifdef SYS_MINGW
wchar_t *wstring; /* 360 chars + \n + \0 */
int len;
len = strlen(string) + 1;
wstring = malloc(2 * len);
// Convert internal utf8 to "console output code page".
//
// This is just bizarre windows behavior. You would expect that
// printf would automatically convert a wide character string to
// the current "console output code page" when using the "%ls" format
// specifier. But it doesn't... so we must do it.
if (!MultiByteToWideChar(CP_UTF8, 0, string, -1, wstring, len))
{
free(string);
free(wstring);
return;
}
free(string);
string = malloc(2 * len);
if (!WideCharToMultiByte(GetConsoleOutputCP(), 0, wstring, -1, string, len,
NULL, NULL))
{
free(string);
free(wstring);
return;
}
free(wstring);
#endif
/* Print it */
fprintf( stderr, "%s", string );
free(string);
}
/**********************************************************************
* hb_log
**********************************************************************
* If verbose mode is one, print message with timestamp. Messages
* longer than 180 characters are stripped ;p
*********************************************************************/
void hb_log( char * log, ... )
{
va_list args;
va_start( args, log );
hb_valog( 0, NULL, log, args );
va_end( args );
}
/**********************************************************************
* hb_deep_log
**********************************************************************
* If verbose mode is >= level, print message with timestamp. Messages
* longer than 360 characters are stripped ;p
*********************************************************************/
void hb_deep_log( hb_debug_level_t level, char * log, ... )
{
va_list args;
va_start( args, log );
hb_valog( level, NULL, log, args );
va_end( args );
}
/**********************************************************************
* hb_error
**********************************************************************
* Using whatever output is available display this error.
*********************************************************************/
void hb_error( char * log, ... )
{
char string[181]; /* 180 chars + \0 */
char rep_string[181];
static char last_string[181];
static int last_error_count = 0;
static uint64_t last_series_error_time = 0;
static hb_lock_t *mutex = 0;
va_list args;
uint64_t time_now;
/* Convert the message to a string */
va_start( args, log );
vsnprintf( string, 180, log, args );
va_end( args );
if( !mutex )
{
mutex = hb_lock_init();
}
hb_lock( mutex );
time_now = hb_get_date();
if( strcmp( string, last_string) == 0 )
{
/*
* The last error and this one are the same, don't log it
* just count it instead, unless it was more than one second
* ago.
*/
last_error_count++;
if( last_series_error_time + ( 1000 * 1 ) > time_now )
{
hb_unlock( mutex );
return;
}
}
/*
* A new error, or the same one more than 10sec since the last one
* did we have any of the same counted up?
*/
if( last_error_count > 0 )
{
/*
* Print out the last error to ensure context for the last
* repeated message.
*/
if( error_handler )
{
error_handler( last_string );
} else {
hb_log( "%s", last_string );
}
if( last_error_count > 1 )
{
/*
* Only print out the repeat message for more than 2 of the
* same, since we just printed out two of them already.
*/
snprintf( rep_string, 180, "Last error repeated %d times",
last_error_count - 1 );
if( error_handler )
{
error_handler( rep_string );
} else {
hb_log( "%s", rep_string );
}
}
last_error_count = 0;
}
last_series_error_time = time_now;
strcpy( last_string, string );
/*
* Got the error in a single string, send it off to be dispatched.
*/
if( error_handler )
{
error_handler( string );
} else {
hb_log( "%s", string );
}
hb_unlock( mutex );
}
void hb_register_error_handler( hb_error_handler_t * handler )
{
error_handler = handler;
}
static void hb_update_str( char **dst, const char *src )
{
if ( dst )
{
free( *dst );
*dst = NULL;
if ( src )
{
*dst = strdup( src );
}
}
}
/**********************************************************************
* hb_title_init
**********************************************************************
*
*********************************************************************/
hb_title_t * hb_title_init( char * path, int index )
{
hb_title_t * t;
t = calloc( sizeof( hb_title_t ), 1 );
t->index = index;
t->playlist = -1;
t->list_audio = hb_list_init();
t->list_chapter = hb_list_init();
t->list_subtitle = hb_list_init();
t->list_attachment = hb_list_init();
t->metadata = hb_metadata_init();
strncat(t->path, path, sizeof(t->path) - 1);
// default to decoding mpeg2
t->video_id = 0xE0;
t->video_codec = WORK_DECAVCODECV;
t->video_codec_param = AV_CODEC_ID_MPEG2VIDEO;
t->angle_count = 1;
t->geometry.par.num = 1;
t->geometry.par.den = 1;
return t;
}
/**********************************************************************
* hb_title_close
**********************************************************************
*
*********************************************************************/
void hb_title_close( hb_title_t ** _t )
{
hb_title_t * t = *_t;
hb_audio_t * audio;
hb_chapter_t * chapter;
hb_subtitle_t * subtitle;
hb_attachment_t * attachment;
while( ( chapter = hb_list_item( t->list_chapter, 0 ) ) )
{
hb_list_rem( t->list_chapter, chapter );
hb_chapter_close( &chapter );
}
hb_list_close( &t->list_chapter );
while( ( audio = hb_list_item( t->list_audio, 0 ) ) )
{
hb_list_rem( t->list_audio, audio );
hb_audio_close( &audio );
}
hb_list_close( &t->list_audio );
while( ( subtitle = hb_list_item( t->list_subtitle, 0 ) ) )
{
hb_list_rem( t->list_subtitle, subtitle );
hb_subtitle_close( &subtitle );
}
hb_list_close( &t->list_subtitle );
while( ( attachment = hb_list_item( t->list_attachment, 0 ) ) )
{
hb_list_rem( t->list_attachment, attachment );
hb_attachment_close( &attachment );
}
hb_list_close( &t->list_attachment );
hb_metadata_close( &t->metadata );
free( t->video_codec_name );
free(t->container_name);
free( t );
*_t = NULL;
}
static void job_setup(hb_job_t * job, hb_title_t * title)
{
if ( job == NULL || title == NULL )
return;
job->title = title;
/* Set defaults settings */
job->chapter_start = 1;
job->chapter_end = hb_list_count( title->list_chapter );
job->list_chapter = hb_chapter_list_copy( title->list_chapter );
/* Autocrop by default. Gnark gnark */
memcpy( job->crop, title->crop, 4 * sizeof( int ) );
hb_geometry_t resultGeo, srcGeo;
hb_geometry_settings_t uiGeo;
srcGeo = title->geometry;
memset(&uiGeo, 0, sizeof(uiGeo));
memcpy(uiGeo.crop, title->crop, 4 * sizeof( int ));
uiGeo.geometry.width = srcGeo.width - uiGeo.crop[2] - uiGeo.crop[3];
uiGeo.geometry.height = srcGeo.height - uiGeo.crop[0] - uiGeo.crop[1];
uiGeo.mode = HB_ANAMORPHIC_NONE;
uiGeo.keep = HB_KEEP_DISPLAY_ASPECT;
hb_set_anamorphic_size2(&srcGeo, &uiGeo, &resultGeo);
job->width = resultGeo.width;
job->height = resultGeo.height;
job->par = resultGeo.par;
job->vcodec = HB_VCODEC_FFMPEG_MPEG4;
job->vquality = HB_INVALID_VIDEO_QUALITY;
job->vbitrate = 1000;
job->twopass = 0;
job->pass_id = HB_PASS_ENCODE;
job->vrate = title->vrate;
job->mux = HB_MUX_MP4;
job->list_audio = hb_list_init();
job->list_subtitle = hb_list_init();
job->list_filter = hb_list_init();
job->list_attachment = hb_attachment_list_copy( title->list_attachment );
job->metadata = hb_metadata_copy( title->metadata );
#ifdef USE_QSV
job->qsv.enc_info.is_init_done = 0;
job->qsv.async_depth = HB_QSV_ASYNC_DEPTH_DEFAULT;
job->qsv.decode = !!(title->video_decode_support &
HB_DECODE_SUPPORT_QSV);
#endif
}
static void job_clean( hb_job_t * job )
{
if (job)
{
hb_chapter_t *chapter;
hb_audio_t *audio;
hb_subtitle_t *subtitle;
hb_filter_object_t *filter;
hb_attachment_t *attachment;
free((void*)job->json);
job->json = NULL;
free(job->encoder_preset);
job->encoder_preset = NULL;
free(job->encoder_tune);
job->encoder_tune = NULL;
free(job->encoder_options);
job->encoder_options = NULL;
free(job->encoder_profile);
job->encoder_profile = NULL;
free(job->encoder_level);
job->encoder_level = NULL;
free(job->file);
job->file = NULL;
// clean up chapter list
while( ( chapter = hb_list_item( job->list_chapter, 0 ) ) )
{
hb_list_rem( job->list_chapter, chapter );
hb_chapter_close( &chapter );
}
hb_list_close( &job->list_chapter );
// clean up audio list
while( ( audio = hb_list_item( job->list_audio, 0 ) ) )
{
hb_list_rem( job->list_audio, audio );
hb_audio_close( &audio );
}
hb_list_close( &job->list_audio );
// clean up subtitle list
while( ( subtitle = hb_list_item( job->list_subtitle, 0 ) ) )
{
hb_list_rem( job->list_subtitle, subtitle );
hb_subtitle_close( &subtitle );
}
hb_list_close( &job->list_subtitle );
// clean up filter list
while( ( filter = hb_list_item( job->list_filter, 0 ) ) )
{
hb_list_rem( job->list_filter, filter );
hb_filter_close( &filter );
}
hb_list_close( &job->list_filter );
// clean up attachment list
while( ( attachment = hb_list_item( job->list_attachment, 0 ) ) )
{
hb_list_rem( job->list_attachment, attachment );
hb_attachment_close( &attachment );
}
hb_list_close( &job->list_attachment );
// clean up metadata
hb_metadata_close( &job->metadata );
}
}
hb_title_t * hb_find_title_by_index( hb_handle_t *h, int title_index )
{
hb_title_set_t *title_set = hb_get_title_set( h );
int ii;
for (ii = 0; ii < hb_list_count(title_set->list_title); ii++)
{
hb_title_t *title = hb_list_item(title_set->list_title, ii);
if (title_index == title->index)
{
return title;
}
}
return NULL;
}
/*
* Create a pristine job structure from a title
* title_index is 1 based
*/
hb_job_t * hb_job_init_by_index( hb_handle_t * h, int title_index )
{
hb_title_t * title = hb_find_title_by_index(h, title_index);
if (title == NULL)
return NULL;
return hb_job_init(title);
}
hb_job_t * hb_job_init( hb_title_t * title )
{
hb_job_t * job;
if ( title == NULL )
return NULL;
job = calloc( sizeof( hb_job_t ), 1 );
job_setup(job, title);
return job;
}
/**********************************************************************
* hb_job_close
**********************************************************************
*
*********************************************************************/
void hb_job_close( hb_job_t ** _j )
{
if (_j && *_j)
{
job_clean(*_j);
free( *_j );
_j = NULL;
}
}
void hb_job_set_encoder_preset(hb_job_t *job, const char *preset)
{
if (job != NULL)
{
if (preset == NULL || preset[0] == 0)
{
preset = NULL;
}
hb_update_str(&job->encoder_preset, preset);
}
}
void hb_job_set_encoder_tune(hb_job_t *job, const char *tune)
{
if (job != NULL)
{
if (tune == NULL || tune[0] == 0)
{
tune = NULL;
}
hb_update_str(&job->encoder_tune, tune);
}
}
void hb_job_set_encoder_options(hb_job_t *job, const char *options)
{
if (job != NULL)
{
if (options == NULL || options[0] == 0)
{
options = NULL;
}
hb_update_str(&job->encoder_options, options);
}
}
void hb_job_set_encoder_profile(hb_job_t *job, const char *profile)
{
if (job != NULL)
{
if (profile == NULL || profile[0] == 0)
{
profile = NULL;
}
hb_update_str(&job->encoder_profile, profile);
}
}
void hb_job_set_encoder_level(hb_job_t *job, const char *level)
{
if (job != NULL)
{
if (level == NULL || level[0] == 0)
{
level = NULL;
}
hb_update_str(&job->encoder_level, level);
}
}
void hb_job_set_file(hb_job_t *job, const char *file)
{
if (job != NULL)
{
hb_update_str(&job->file, file);
}
}
hb_filter_object_t * hb_filter_copy( hb_filter_object_t * filter )
{
if( filter == NULL )
return NULL;
hb_filter_object_t * filter_copy = malloc( sizeof( hb_filter_object_t ) );
memcpy( filter_copy, filter, sizeof( hb_filter_object_t ) );
if( filter->settings )
filter_copy->settings = hb_value_dup(filter->settings);
filter_copy->sub_filter = hb_filter_copy(filter->sub_filter);
return filter_copy;
}
/**********************************************************************
* hb_filter_list_copy
**********************************************************************
*
*********************************************************************/
hb_list_t *hb_filter_list_copy(const hb_list_t *src)
{
hb_list_t *list = hb_list_init();
hb_filter_object_t *filter = NULL;
int i;
if( src )
{
for( i = 0; i < hb_list_count(src); i++ )
{
if( ( filter = hb_list_item( src, i ) ) )
{
hb_list_add( list, hb_filter_copy(filter) );
}
}
}
return list;
}
hb_filter_object_t * hb_filter_find(const hb_list_t *list, int filter_id)
{
hb_filter_object_t *filter = NULL;
int ii;
if (list == NULL)
{
return NULL;
}
for (ii = 0; ii < hb_list_count(list); ii++)
{
filter = hb_list_item(list, ii);
if (filter->id == filter_id)
{
return filter;
}
}
return NULL;
}
/**
* Gets a filter object with the given type
* @param filter_id The type of filter to get.
* @returns The requested filter object.
*/
hb_filter_object_t * hb_filter_get( int filter_id )
{
hb_filter_object_t * filter;
switch( filter_id )
{
case HB_FILTER_DETELECINE:
filter = &hb_filter_detelecine;
break;
case HB_FILTER_COMB_DETECT:
filter = &hb_filter_comb_detect;
break;
case HB_FILTER_DECOMB:
filter = &hb_filter_decomb;
break;
case HB_FILTER_DEINTERLACE:
filter = &hb_filter_deinterlace;
break;
case HB_FILTER_VFR:
filter = &hb_filter_vfr;
break;
case HB_FILTER_DEBLOCK:
filter = &hb_filter_deblock;
break;
case HB_FILTER_DENOISE:
filter = &hb_filter_denoise;
break;
case HB_FILTER_NLMEANS:
filter = &hb_filter_nlmeans;
break;
case HB_FILTER_RENDER_SUB:
filter = &hb_filter_render_sub;
break;
case HB_FILTER_CROP_SCALE:
filter = &hb_filter_crop_scale;
break;
case HB_FILTER_LAPSHARP:
filter = &hb_filter_lapsharp;
break;
case HB_FILTER_UNSHARP:
filter = &hb_filter_unsharp;
break;
case HB_FILTER_AVFILTER:
filter = &hb_filter_avfilter;
break;
case HB_FILTER_PAD:
filter = &hb_filter_pad;
break;
case HB_FILTER_ROTATE:
filter = &hb_filter_rotate;
break;
case HB_FILTER_GRAYSCALE:
filter = &hb_filter_grayscale;
break;
#ifdef USE_QSV
case HB_FILTER_QSV:
filter = &hb_filter_qsv;
break;
case HB_FILTER_QSV_PRE:
filter = &hb_filter_qsv_pre;
break;
case HB_FILTER_QSV_POST:
filter = &hb_filter_qsv_post;
break;
#endif
case HB_FILTER_MT_FRAME:
filter = &hb_filter_mt_frame;
break;
default:
filter = NULL;
break;
}
return filter;
}
hb_filter_object_t * hb_filter_init( int filter_id )
{
switch (filter_id)
{
case HB_FILTER_UNSHARP:
case HB_FILTER_LAPSHARP:
{
hb_filter_object_t * wrapper;
wrapper = hb_filter_copy(hb_filter_get(HB_FILTER_MT_FRAME));
wrapper->sub_filter = hb_filter_copy(hb_filter_get(filter_id));
wrapper->id = filter_id;
wrapper->name = wrapper->sub_filter->name;
return wrapper;
} break;
default:
return hb_filter_copy(hb_filter_get(filter_id));
}
}
/**********************************************************************
* hb_filter_close
**********************************************************************
*
*********************************************************************/
void hb_filter_close( hb_filter_object_t ** _f )
{
hb_filter_object_t * f = *_f;
if (f == NULL)
{
return;
}
hb_filter_close(&f->sub_filter);
hb_value_free(&f->settings);
free( f );
*_f = NULL;
}
/**********************************************************************
* hb_filter_info_close
**********************************************************************
*
*********************************************************************/
void hb_filter_info_close( hb_filter_info_t ** _fi )
{
hb_filter_info_t * fi = *_fi;
if (fi != NULL)
{
free(fi->human_readable_desc);
}
free( fi );
*_fi = NULL;
}
static char * append_string(char * dst, const char * src)
{
int dst_len = 0, src_len, len;
if (src == NULL)
{
return dst;
}
src_len = len = strlen(src) + 1;
if (dst != NULL)
{
dst_len = strlen(dst);
len += dst_len;
}
char * tmp = realloc(dst, len);
if (tmp == NULL)
{
// Failed to allocate required space
return dst;
}
dst = tmp;
memcpy(dst + dst_len, src, src_len);
return dst;
}
static char * stringify_array(int filter_id, hb_value_array_t * array)
{
char * result = strdup("");
int ii;
int len = hb_value_array_len(array);
int first = 1;
if (hb_value_array_len(array) == 0)
{
return result;
}
for (ii = 0; ii < len; ii++)
{
hb_value_t * val = hb_value_array_get(array, ii);
char * str = hb_filter_settings_string(filter_id, val);
if (str != NULL)
{
if (!first)
{
result = append_string(result, ",");
}
first = 0;
if (hb_value_type(val) == HB_VALUE_TYPE_DICT)
{
result = append_string(result, str);
}
else if (hb_value_type(val) == HB_VALUE_TYPE_ARRAY)
{
result = append_string(result, "[");
result = append_string(result, str);
result = append_string(result, "]");
}
else
{
result = append_string(result, str);
}
free(str);
}
}
return result;
}
static char * stringify_dict(int filter_id, hb_dict_t * dict)
{
char * result = strdup("");
const char * key;
char ** keys = NULL;
hb_value_t * val;
hb_dict_iter_t iter;
int first = 1;
if (hb_dict_elements(dict) == 0)
{
return result;
}
// Check for dict containing rational value
if (hb_dict_elements(dict) == 2)
{
hb_value_t *num_val = hb_dict_get(dict, "Num");
hb_value_t *den_val = hb_dict_get(dict, "Den");
if (num_val != NULL && den_val != NULL &&
hb_value_type(num_val) == HB_VALUE_TYPE_INT &&
hb_value_type(den_val) == HB_VALUE_TYPE_INT)
{
int num = hb_value_get_int(num_val);
int den = hb_value_get_int(den_val);
char * str = hb_strdup_printf("%d/%d", num, den);
result = append_string(result, str);
free(str);
return result;
}
}
hb_filter_object_t * filter = hb_filter_get(filter_id);
if (filter != NULL)
{
keys = hb_filter_get_keys(filter_id);
if (keys != NULL && keys[0] == NULL)
{
hb_str_vfree(keys);
keys = NULL;
}
}
int done, ii = 0;
iter = hb_dict_iter_init(dict);
if (keys == NULL)
{
done = !hb_dict_iter_next_ex(dict, &iter, &key, NULL);
}
else
{
done = (key = keys[ii]) == NULL;
}
while (!done)
{
val = hb_dict_get(dict, key);
if (val != NULL)
{
if (!first)
{
result = append_string(result, ":");
}
first = 0;
result = append_string(result, key);
int elements = 1;
if (hb_value_type(val) == HB_VALUE_TYPE_NULL)
{
elements = 0;
}
else if (hb_value_type(val) == HB_VALUE_TYPE_DICT)
{
elements = hb_dict_elements(val);
}
else if (hb_value_type(val) == HB_VALUE_TYPE_ARRAY)
{
elements = hb_value_array_len(val);
}
if (elements != 0)
{
char * str = hb_filter_settings_string(filter_id, val);
if (str != NULL)
{
result = append_string(result, "=");
if (hb_value_type(val) == HB_VALUE_TYPE_DICT)
{
result = append_string(result, "'");
result = append_string(result, str);
result = append_string(result, "'");
}
else if (hb_value_type(val) == HB_VALUE_TYPE_ARRAY)
{
result = append_string(result, "[");
result = append_string(result, str);
result = append_string(result, "]");
}
else
{
result = append_string(result, str);
}
free(str);
}
}
}
ii++;
if (keys == NULL)
{
done = !hb_dict_iter_next_ex(dict, &iter, &key, NULL);
}
else
{
done = (key = keys[ii]) == NULL;
}
}
hb_str_vfree(keys);
return result;
}
char * hb_filter_settings_string(int filter_id, hb_value_t * value)
{
if (value == NULL || hb_value_type(value) == HB_VALUE_TYPE_NULL)
{
return strdup("");
}
if (hb_value_type(value) == HB_VALUE_TYPE_DICT)
{
return stringify_dict(filter_id, value);
}
if (hb_value_type(value) == HB_VALUE_TYPE_ARRAY)
{
return stringify_array(filter_id, value);
}
return hb_value_get_string_xform(value);
}
char * hb_filter_settings_string_json(int filter_id, const char * json)
{
hb_value_t * value = hb_value_json(json);
char * result = hb_filter_settings_string(filter_id, value);
hb_value_free(&value);
return result;
}
hb_dict_t * hb_parse_filter_settings(const char * settings_str)
{
hb_dict_t * dict = hb_dict_init();
char ** settings_list = hb_str_vsplit(settings_str, ':');
int ii;
for (ii = 0; settings_list[ii] != NULL; ii++)
{
char * key, * value;
char ** settings_pair = hb_str_vsplit(settings_list[ii], '=');
if (settings_pair[0] == NULL || settings_pair[1] == NULL)
{
// Parse error. Not key=value pair.
hb_str_vfree(settings_list);
hb_str_vfree(settings_pair);
hb_value_free(&dict);
hb_log("hb_parse_filter_settings: Error parsing (%s)",
settings_str);
return NULL;
}
key = settings_pair[0];
value = settings_pair[1];
int last = strlen(value) - 1;
// Check if value was quoted dictionary and remove quotes
// and parse the sub-dictionary. This should only happen
// for avfilter settings.
if (last > 0 && value[0] == '\'' && value[last] == '\'')
{
char * str = strdup(value + 1);
str[last - 1] = 0;
hb_dict_t * sub_dict = hb_parse_filter_settings(str);
free(str);
if (sub_dict == NULL)
{
// Parse error. Not key=value pair.
hb_str_vfree(settings_list);
hb_str_vfree(settings_pair);
hb_value_free(&dict);
hb_log("hb_parse_filter_settings: Error parsing (%s)",
settings_str);
return NULL;
}
hb_dict_case_set(dict, key, sub_dict);
}
// Check if value was quoted string and remove quotes
else if (last > 0 && value[0] == '"' && value[last] == '"')
{
char * str = strdup(value + 1);
str[last - 1] = 0;
hb_dict_case_set(dict, key, hb_value_string(str));
free(str);
}
else
{
hb_dict_case_set(dict, key, hb_value_string(value));
}
hb_str_vfree(settings_pair);
}
hb_str_vfree(settings_list);
return dict;
}
char * hb_parse_filter_settings_json(const char * settings_str)
{
hb_dict_t * dict = hb_parse_filter_settings(settings_str);
char * result = hb_value_get_json(dict);
hb_value_free(&dict);
return result;
}
/**********************************************************************
* hb_chapter_copy
**********************************************************************
*
*********************************************************************/
hb_chapter_t *hb_chapter_copy(const hb_chapter_t *src)
{
hb_chapter_t *chap = NULL;
if ( src )
{
chap = calloc( 1, sizeof(*chap) );
memcpy( chap, src, sizeof(*chap) );
if ( src->title )
{
chap->title = strdup( src->title );
}
}
return chap;
}
/**********************************************************************
* hb_chapter_list_copy
**********************************************************************
*
*********************************************************************/
hb_list_t *hb_chapter_list_copy(const hb_list_t *src)
{
hb_list_t *list = hb_list_init();
hb_chapter_t *chapter = NULL;
int i;
if( src )
{
for( i = 0; i < hb_list_count(src); i++ )
{
if( ( chapter = hb_list_item( src, i ) ) )
{
hb_list_add( list, hb_chapter_copy(chapter) );
}
}
}
return list;
}
/**********************************************************************
* hb_chapter_close
**********************************************************************
*
*********************************************************************/
void hb_chapter_close(hb_chapter_t **chap)
{
if ( chap && *chap )
{
free((*chap)->title);
free(*chap);
*chap = NULL;
}
}
/**********************************************************************
* hb_chapter_set_title
**********************************************************************
*
*********************************************************************/
void hb_chapter_set_title( hb_chapter_t *chapter, const char *title )
{
if ( chapter )
{
hb_update_str( &chapter->title, title );
}
}
/**********************************************************************
* hb_chapter_set_title_by_index
**********************************************************************
* Applies information from the given job to the official job instance.
* @param job Handle to hb_job_t.
* @param chapter The chapter to apply the name to (1-based).
* @param titel to apply.
*********************************************************************/
void hb_chapter_set_title_by_index( hb_job_t * job, int chapter_index, const char * title )
{
hb_chapter_t * chapter = hb_list_item( job->list_chapter, chapter_index - 1 );
hb_chapter_set_title( chapter, title );
}
/**********************************************************************
* hb_audio_copy
**********************************************************************
*
*********************************************************************/
hb_audio_t *hb_audio_copy(const hb_audio_t *src)
{
hb_audio_t *audio = NULL;
if( src )
{
audio = calloc(1, sizeof(*audio));
memcpy(audio, src, sizeof(*audio));
if ( src->config.out.name )
{
audio->config.out.name = strdup(src->config.out.name);
}
}
return audio;
}
/**********************************************************************
* hb_audio_list_copy
**********************************************************************
*
*********************************************************************/
hb_list_t *hb_audio_list_copy(const hb_list_t *src)
{
hb_list_t *list = hb_list_init();
hb_audio_t *audio = NULL;
int i;
if( src )
{
for( i = 0; i < hb_list_count(src); i++ )
{
if( ( audio = hb_list_item( src, i ) ) )
{
hb_list_add( list, hb_audio_copy(audio) );
}
}
}
return list;
}
/**********************************************************************
* hb_audio_close
**********************************************************************
*
*********************************************************************/
void hb_audio_close( hb_audio_t **audio )
{
if ( audio && *audio )
{
free((*audio)->config.out.name);
free(*audio);
*audio = NULL;
}
}
/**********************************************************************
* hb_audio_new
**********************************************************************
*
*********************************************************************/
void hb_audio_config_init(hb_audio_config_t * audiocfg)
{
/* Set read-only parameters to invalid values */
audiocfg->in.codec = 0;
audiocfg->in.codec_param = 0;
audiocfg->in.reg_desc = 0;
audiocfg->in.stream_type = 0;
audiocfg->in.substream_type = 0;
audiocfg->in.version = 0;
audiocfg->in.flags = 0;
audiocfg->in.mode = 0;
audiocfg->in.samplerate = -1;
audiocfg->in.sample_bit_depth = 0;
audiocfg->in.samples_per_frame = -1;
audiocfg->in.bitrate = -1;
audiocfg->in.matrix_encoding = AV_MATRIX_ENCODING_NONE;
audiocfg->in.channel_layout = 0;
audiocfg->in.channel_map = NULL;
audiocfg->lang.description[0] = 0;
audiocfg->lang.simple[0] = 0;
audiocfg->lang.iso639_2[0] = 0;
/* Initialize some sensible defaults */
audiocfg->in.track = audiocfg->out.track = 0;
audiocfg->out.codec = hb_audio_encoder_get_default(HB_MUX_MP4); // default container
audiocfg->out.samplerate = -1;
audiocfg->out.samples_per_frame = -1;
audiocfg->out.bitrate = -1;
audiocfg->out.quality = HB_INVALID_AUDIO_QUALITY;
audiocfg->out.compression_level = -1;
audiocfg->out.mixdown = HB_INVALID_AMIXDOWN;
audiocfg->out.dynamic_range_compression = 0;
audiocfg->out.gain = 0;
audiocfg->out.normalize_mix_level = 0;
audiocfg->out.dither_method = hb_audio_dither_get_default();
audiocfg->out.name = NULL;
}
/**********************************************************************
* hb_audio_add
**********************************************************************
*
*********************************************************************/
int hb_audio_add(const hb_job_t * job, const hb_audio_config_t * audiocfg)
{
hb_title_t *title = job->title;
hb_audio_t *audio;
audio = hb_audio_copy( hb_list_item( title->list_audio, audiocfg->in.track ) );
if( audio == NULL )
{
/* We fail! */
return 0;
}
if( (audiocfg->in.bitrate != -1) && (audiocfg->in.codec != 0xDEADBEEF) )
{
/* This most likely means the client didn't call hb_audio_config_init
* so bail. */
hb_audio_close(&audio);
return 0;
}
/* Set the job's "in track" to the value passed in audiocfg.
* HandBrakeCLI assumes this value is preserved in the jobs
* audio list, but in.track in the title's audio list is not
* required to be the same. */
// "track" in title->list_audio is an index into the source's tracks.
// "track" in job->list_audio is an index into title->list_audio
audio->config.in.track = audiocfg->in.track;
/* Really shouldn't ignore the passed out track, but there is currently no
* way to handle duplicates or out-of-order track numbers. */
audio->config.out = audiocfg->out;
audio->config.out.track = hb_list_count(job->list_audio) + 1;
if (audiocfg->out.name && *audiocfg->out.name)
{
audio->config.out.name = strdup(audiocfg->out.name);
}
hb_list_add(job->list_audio, audio);
return 1;
}
hb_audio_config_t * hb_list_audio_config_item(hb_list_t * list, int i)
{
hb_audio_t *audio = NULL;
if( (audio = hb_list_item(list, i)) )
return &(audio->config);
return NULL;
}
/**********************************************************************
* hb_subtitle_copy
**********************************************************************
*
*********************************************************************/
hb_subtitle_t *hb_subtitle_copy(const hb_subtitle_t *src)
{
hb_subtitle_t *subtitle = NULL;
if( src )
{
subtitle = calloc(1, sizeof(*subtitle));
memcpy(subtitle, src, sizeof(*subtitle));
if ( src->extradata )
{
subtitle->extradata = malloc( src->extradata_size );
memcpy( subtitle->extradata, src->extradata, src->extradata_size );
}
}
return subtitle;
}
/**********************************************************************
* hb_subtitle_list_copy
**********************************************************************
*
*********************************************************************/
hb_list_t *hb_subtitle_list_copy(const hb_list_t *src)
{
hb_list_t *list = hb_list_init();
hb_subtitle_t *subtitle = NULL;
int i;
if( src )
{
for( i = 0; i < hb_list_count(src); i++ )
{
if( ( subtitle = hb_list_item( src, i ) ) )
{
hb_list_add( list, hb_subtitle_copy(subtitle) );
}
}
}
return list;
}
/**********************************************************************
* hb_subtitle_close
**********************************************************************
*
*********************************************************************/
void hb_subtitle_close( hb_subtitle_t **sub )
{
if ( sub && *sub )
{
free ((*sub)->extradata);
free(*sub);
*sub = NULL;
}
}
/**********************************************************************
* hb_subtitle_add
**********************************************************************
*
*********************************************************************/
int hb_subtitle_add_ssa_header(hb_subtitle_t *subtitle, const char *font,
int fs, int w, int h)
{
// Free any pre-existing extradata
free(subtitle->extradata);
// SRT subtitles are represented internally as SSA
// Create an SSA header
const char * ssa_header =
"[Script Info]\r\n"
"ScriptType: v4.00+\r\n"
"Collisions: Normal\r\n"
"PlayResX: %d\r\n"
"PlayResY: %d\r\n"
"Timer: 100.0\r\n"
"WrapStyle: 0\r\n"
"\r\n"
"[V4+ Styles]\r\n"
"Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding\r\n"
"Style: Default,%s,%d,&H00FFFFFF,&H00FFFFFF,&H000F0F0F,&H000F0F0F,0,0,0,0,100,100,0,0.00,1,2,3,2,20,20,20,0\r\n";
subtitle->extradata = (uint8_t*)hb_strdup_printf(ssa_header, w, h, font, fs);
if (subtitle->extradata == NULL)
{
hb_error("hb_subtitle_add_ssa_header: malloc failed");
return 0;
}
subtitle->extradata_size = strlen((char*)subtitle->extradata) + 1;
return 1;
}
int hb_subtitle_add(const hb_job_t * job, const hb_subtitle_config_t * subtitlecfg, int track)
{
hb_title_t *title = job->title;
hb_subtitle_t *subtitle;
subtitle = hb_subtitle_copy( hb_list_item( title->list_subtitle, track ) );
if( subtitle == NULL )
{
/* We fail! */
return 0;
}
// "track" in title->list_audio is an index into the source's tracks.
// "track" in job->list_audio is an index into title->list_audio
subtitle->track = track;
subtitle->config = *subtitlecfg;
subtitle->out_track = hb_list_count(job->list_subtitle) + 1;
hb_list_add(job->list_subtitle, subtitle);
return 1;
}
int hb_srt_add( const hb_job_t * job,
const hb_subtitle_config_t * subtitlecfg,
const char *lang_code )
{
hb_subtitle_t *subtitle;
iso639_lang_t *lang = NULL;
subtitle = calloc( 1, sizeof( *subtitle ) );
if (subtitle == NULL)
{
hb_error("hb_srt_add: malloc failed");
return 0;
}
subtitle->id = (hb_list_count(job->list_subtitle) << 8) | 0xFF;
subtitle->format = TEXTSUB;
subtitle->source = SRTSUB;
subtitle->codec = WORK_DECSRTSUB;
lang = lang_for_code2(lang_code);
if (lang == NULL)
{
hb_log("hb_srt_add: unknown language code (%s)", lang_code);
lang = lang_for_code2("und");
}
snprintf(subtitle->lang, sizeof(subtitle->lang), "%s [%s]",
strlen(lang->native_name) ? lang->native_name : lang->eng_name,
hb_subsource_name(subtitle->source));
strcpy(subtitle->iso639_2, lang->iso639_2);
subtitle->config = *subtitlecfg;
hb_list_add(job->list_subtitle, subtitle);
return 1;
}
int hb_subtitle_can_force( int source )
{
return source == VOBSUB || source == PGSSUB;
}
int hb_subtitle_can_burn( int source )
{
return source == VOBSUB || source == PGSSUB || source == SSASUB ||
source == SRTSUB || source == CC608SUB || source == UTF8SUB ||
source == TX3GSUB;
}
int hb_subtitle_can_pass( int source, int mux )
{
switch (mux)
{
case HB_MUX_AV_MKV:
switch( source )
{
case PGSSUB:
case VOBSUB:
case SSASUB:
case SRTSUB:
case UTF8SUB:
case TX3GSUB:
case CC608SUB:
case CC708SUB:
return 1;
default:
return 0;
} break;
case HB_MUX_AV_MP4:
switch( source )
{
case VOBSUB:
case SSASUB:
case SRTSUB:
case UTF8SUB:
case TX3GSUB:
case CC608SUB:
case CC708SUB:
return 1;
default:
return 0;
} break;
default:
// Internal error. Should never get here.
hb_error("internal error. Bad mux %d\n", mux);
return 0;
}
}
int hb_audio_can_apply_drc(uint32_t codec, uint32_t codec_param, int encoder)
{
if (encoder & HB_ACODEC_PASS_FLAG)
{
// can't apply DRC to passthrough audio
return 0;
}
else if (codec & HB_ACODEC_FF_MASK)
{
return (codec_param == AV_CODEC_ID_AC3 ||
codec_param == AV_CODEC_ID_EAC3);
}
else if (codec == HB_ACODEC_AC3)
{
return 1;
}
else
{
return 0;
}
}
int hb_audio_can_apply_drc2(hb_handle_t *h, int title_idx, int audio_idx, int encoder)
{
hb_title_t *title = hb_find_title_by_index(h, title_idx);
if (title == NULL)
return 0;
hb_audio_t *audio = hb_list_item(title->list_audio, audio_idx);
if (audio == NULL)
return 0;
return hb_audio_can_apply_drc(audio->config.in.codec,
audio->config.in.codec_param, encoder);
}
/**********************************************************************
* hb_metadata_init
**********************************************************************
*
*********************************************************************/
hb_metadata_t *hb_metadata_init()
{
hb_metadata_t *metadata = calloc( 1, sizeof(*metadata) );
return metadata;
}
/**********************************************************************
* hb_metadata_copy
**********************************************************************
*
*********************************************************************/
hb_metadata_t *hb_metadata_copy( const hb_metadata_t *src )
{
hb_metadata_t *metadata = NULL;
if ( src )
{
metadata = calloc( 1, sizeof(*metadata) );
if ( src->name )
{
metadata->name = strdup(src->name);
}
if ( src->artist )
{
metadata->artist = strdup(src->artist);
}
if ( src->album_artist )
{
metadata->album_artist = strdup(src->album_artist);
}
if ( src->composer )
{
metadata->composer = strdup(src->composer);
}
if ( src->release_date )
{
metadata->release_date = strdup(src->release_date);
}
if ( src->comment )
{
metadata->comment = strdup(src->comment);
}
if ( src->album )
{
metadata->album = strdup(src->album);
}
if ( src->genre )
{
metadata->genre = strdup(src->genre);
}
if ( src->description )
{
metadata->description = strdup(src->description);
}
if ( src->long_description )
{
metadata->long_description = strdup(src->long_description);
}
if ( src->list_coverart )
{
int ii;
for ( ii = 0; ii < hb_list_count( src->list_coverart ); ii++ )
{
hb_coverart_t *art = hb_list_item( src->list_coverart, ii );
hb_metadata_add_coverart(
metadata, art->data, art->size, art->type );
}
}
}
return metadata;
}
/**********************************************************************
* hb_metadata_close
**********************************************************************
*
*********************************************************************/
void hb_metadata_close( hb_metadata_t **_m )
{
if ( _m && *_m )
{
hb_metadata_t *m = *_m;
hb_coverart_t *art;
free( m->name );
free( m->artist );
free( m->composer );
free( m->release_date );
free( m->comment );
free( m->album );
free( m->album_artist );
free( m->genre );
free( m->description );
free( m->long_description );
if ( m->list_coverart )
{
while( ( art = hb_list_item( m->list_coverart, 0 ) ) )
{
hb_list_rem( m->list_coverart, art );
free( art->data );
free( art );
}
hb_list_close( &m->list_coverart );
}
free( m );
*_m = NULL;
}
}
/**********************************************************************
* hb_metadata_set_*
**********************************************************************
*
*********************************************************************/
void hb_metadata_set_name( hb_metadata_t *metadata, const char *name )
{
if ( metadata )
{
hb_update_str( &metadata->name, name );
}
}
void hb_metadata_set_artist( hb_metadata_t *metadata, const char *artist )
{
if ( metadata )
{
hb_update_str( &metadata->artist, artist );
}
}
void hb_metadata_set_composer( hb_metadata_t *metadata, const char *composer )
{
if ( metadata )
{
hb_update_str( &metadata->composer, composer );
}
}
void hb_metadata_set_release_date( hb_metadata_t *metadata, const char *release_date )
{
if ( metadata )
{
hb_update_str( &metadata->release_date, release_date );
}
}
void hb_metadata_set_comment( hb_metadata_t *metadata, const char *comment )
{
if ( metadata )
{
hb_update_str( &metadata->comment, comment );
}
}
void hb_metadata_set_genre( hb_metadata_t *metadata, const char *genre )
{
if ( metadata )
{
hb_update_str( &metadata->genre, genre );
}
}
void hb_metadata_set_album( hb_metadata_t *metadata, const char *album )
{
if ( metadata )
{
hb_update_str( &metadata->album, album );
}
}
void hb_metadata_set_album_artist( hb_metadata_t *metadata, const char *album_artist )
{
if ( metadata )
{
hb_update_str( &metadata->album_artist, album_artist );
}
}
void hb_metadata_set_description( hb_metadata_t *metadata, const char *description )
{
if ( metadata )
{
hb_update_str( &metadata->description, description );
}
}
void hb_metadata_set_long_description( hb_metadata_t *metadata, const char *long_description )
{
if ( metadata )
{
hb_update_str( &metadata->long_description, long_description );
}
}
void hb_metadata_add_coverart( hb_metadata_t *metadata, const uint8_t *data, int size, int type )
{
if ( metadata )
{
if ( metadata->list_coverart == NULL )
{
metadata->list_coverart = hb_list_init();
}
hb_coverart_t *art = calloc( 1, sizeof(hb_coverart_t) );
art->data = malloc( size );
memcpy( art->data, data, size );
art->size = size;
art->type = type;
hb_list_add( metadata->list_coverart, art );
}
}
void hb_metadata_rem_coverart( hb_metadata_t *metadata, int idx )
{
if ( metadata )
{
hb_coverart_t *art = hb_list_item( metadata->list_coverart, idx );
if ( art )
{
hb_list_rem( metadata->list_coverart, art );
free( art->data );
free( art );
}
}
}
char * hb_strdup_vaprintf( const char * fmt, va_list args )
{
int len;
int size = 256;
char * str;
char * tmp;
va_list copy;
str = malloc( size );
if ( str == NULL )
return NULL;
while (1)
{
// vsnprintf modifies it's va_list. Since we may need to do this
// more than once, use a copy of the va_list.
va_copy(copy, args);
/* Try to print in the allocated space. */
len = vsnprintf( str, size, fmt, copy );
/* If that worked, return the string. */
if ( len > -1 && len < size )
{
return str;
}
/* Else try again with more space. */
if ( len > -1 ) /* glibc 2.1 */
size = len + 1; /* precisely what is needed */
else /* glibc 2.0 */
size *= 2; /* twice the old size */
tmp = realloc( str, size );
if ( tmp == NULL )
{
free( str );
return NULL;
}
else
str = tmp;
}
return str;
}
char * hb_strdup_printf( const char * fmt, ... )
{
char * str;
va_list args;
va_start( args, fmt );
str = hb_strdup_vaprintf( fmt, args );
va_end( args );
return str;
}
char * hb_strncat_dup( const char * s1, const char * s2, size_t n )
{
size_t len;
char * str;
len = 0;
if( s1 )
len += strlen( s1 );
if( s2 )
len += MAX( strlen( s2 ), n );
if( !len )
return NULL;
str = malloc( len + 1 );
if( !str )
return NULL;
if( s1 )
strcpy( str, s1 );
else
strcpy( str, "" );
if (s2)
{
strncat( str, s2, n );
}
return str;
}
/**********************************************************************
* hb_attachment_copy
**********************************************************************
*
*********************************************************************/
hb_attachment_t *hb_attachment_copy(const hb_attachment_t *src)
{
hb_attachment_t *attachment = NULL;
if( src )
{
attachment = calloc(1, sizeof(*attachment));
memcpy(attachment, src, sizeof(*attachment));
if ( src->name )
{
attachment->name = strdup( src->name );
}
if ( src->data )
{
attachment->data = malloc( src->size );
memcpy( attachment->data, src->data, src->size );
}
}
return attachment;
}
/**********************************************************************
* hb_attachment_list_copy
**********************************************************************
*
*********************************************************************/
hb_list_t *hb_attachment_list_copy(const hb_list_t *src)
{
hb_list_t *list = hb_list_init();
hb_attachment_t *attachment = NULL;
int i;
if( src )
{
for( i = 0; i < hb_list_count(src); i++ )
{
if( ( attachment = hb_list_item( src, i ) ) )
{
hb_list_add( list, hb_attachment_copy(attachment) );
}
}
}
return list;
}
/**********************************************************************
* hb_attachment_close
**********************************************************************
*
*********************************************************************/
void hb_attachment_close( hb_attachment_t **attachment )
{
if ( attachment && *attachment )
{
free((*attachment)->data);
free((*attachment)->name);
free(*attachment);
*attachment = NULL;
}
}
/**********************************************************************
* hb_yuv2rgb
**********************************************************************
* Converts a YCrCb pixel to an RGB pixel.
*
* This conversion is lossy (due to rounding and clamping).
*
* Algorithm:
* http://en.wikipedia.org/w/index.php?title=YCbCr&oldid=361987695#Technical_details
*********************************************************************/
int hb_yuv2rgb(int yuv)
{
double y, Cr, Cb;
int r, g, b;
y = (yuv >> 16) & 0xff;
Cr = (yuv >> 8) & 0xff;
Cb = (yuv ) & 0xff;
r = 1.164 * (y - 16) + 1.596 * (Cr - 128);
g = 1.164 * (y - 16) - 0.392 * (Cb - 128) - 0.813 * (Cr - 128);
b = 1.164 * (y - 16) + 2.017 * (Cb - 128);
r = (r < 0) ? 0 : r;
g = (g < 0) ? 0 : g;
b = (b < 0) ? 0 : b;
r = (r > 255) ? 255 : r;
g = (g > 255) ? 255 : g;
b = (b > 255) ? 255 : b;
return (r << 16) | (g << 8) | b;
}
/**********************************************************************
* hb_rgb2yuv
**********************************************************************
* Converts an RGB pixel to a YCrCb pixel.
*
* This conversion is lossy (due to rounding and clamping).
*
* Algorithm:
* http://en.wikipedia.org/w/index.php?title=YCbCr&oldid=361987695#Technical_details
*********************************************************************/
int hb_rgb2yuv(int rgb)
{
double r, g, b;
int y, Cr, Cb;
r = (rgb >> 16) & 0xff;
g = (rgb >> 8) & 0xff;
b = (rgb ) & 0xff;
y = 16. + ( 0.257 * r) + (0.504 * g) + (0.098 * b);
Cb = 128. + (-0.148 * r) - (0.291 * g) + (0.439 * b);
Cr = 128. + ( 0.439 * r) - (0.368 * g) - (0.071 * b);
y = (y < 0) ? 0 : y;
Cb = (Cb < 0) ? 0 : Cb;
Cr = (Cr < 0) ? 0 : Cr;
y = (y > 255) ? 255 : y;
Cb = (Cb > 255) ? 255 : Cb;
Cr = (Cr > 255) ? 255 : Cr;
return (y << 16) | (Cr << 8) | Cb;
}
const char * hb_subsource_name( int source )
{
switch (source)
{
case VOBSUB:
return "VOBSUB";
case SRTSUB:
return "SRT";
case CC608SUB:
return "CC608";
case CC708SUB:
return "CC708";
case UTF8SUB:
return "UTF-8";
case TX3GSUB:
return "TX3G";
case SSASUB:
return "SSA";
case PGSSUB:
return "PGS";
default:
return "Unknown";
}
}
void hb_hexdump( hb_debug_level_t level, const char * label, const uint8_t * data, int len )
{
int ii;
char line[80], ascii[19], *p;
ascii[18] = 0;
ascii[0] = '|';
ascii[17] = '|';
memset(&ascii[1], '.', 16);
p = line;
if( label )
hb_deep_log(level, "++++ %s ++++", label);
else
hb_deep_log(level, "++++++++++++");
for( ii = 0; ii < len; ii++ )
{
if( ( ii & 0x0f ) == 0x0f )
{
p += sprintf( p, "%02x", data[ii] );
hb_deep_log( level, " %-50s%20s", line, ascii );
memset(&ascii[1], '.', 16);
p = line;
}
else if( ( ii & 0x07 ) == 0x07 )
{
p += sprintf( p, "%02x ", data[ii] );
}
else
{
p += sprintf( p, "%02x ", data[ii] );
}
if( isgraph( data[ii] ) )
ascii[(ii & 0x0f) + 1] = data[ii];
else
ascii[(ii & 0x0f) + 1] = '.';
}
if( p != line )
{
hb_deep_log( level, " %-50s%20s", line, ascii );
}
}
int hb_str_vlen(char **strv)
{
int i;
if (strv == NULL)
return 0;
for (i = 0; strv[i]; i++);
return i;
}
static const char* strchr_quote(const char *pos, char c, char q)
{
if (pos == NULL)
return NULL;
while (*pos != 0 && *pos != c)
{
if (*pos == q)
{
pos = strchr_quote(pos+1, q, 0);
if (pos == NULL)
return NULL;
pos++;
}
else if (*pos == '\\' && *(pos+1) != 0)
pos += 2;
else
pos++;
}
if (*pos != c)
return NULL;
return pos;
}
static char *strndup_quote(const char *str, char q, int len)
{
if (str == NULL)
return NULL;
char * res;
int str_len = strlen( str );
int src = 0, dst = 0;
res = malloc( len > str_len ? str_len + 1 : len + 1 );
if ( res == NULL ) return res;
while (str[src] != 0 && src < len)
{
if (str[src] == q)
src++;
else
res[dst++] = str[src++];
}
res[dst] = '\0';
return res;
}
char** hb_str_vsplit( const char *str, char delem )
{
const char * pos;
const char * end;
char ** ret;
int count, i;
char quote = '"';
if (delem == '"')
{
quote = '\'';
}
if ( str == NULL || str[0] == 0 )
{
ret = malloc( sizeof(char*) );
if ( ret == NULL ) return ret;
*ret = NULL;
return ret;
}
// Find number of elements in the string
count = 1;
pos = str;
while ( ( pos = strchr_quote( pos, delem, quote ) ) != NULL )
{
count++;
pos++;
}
ret = calloc( ( count + 1 ), sizeof(char*) );
if ( ret == NULL ) return ret;
pos = str;
for ( i = 0; i < count - 1; i++ )
{
end = strchr_quote( pos, delem, quote );
ret[i] = strndup_quote(pos, quote, end - pos);
pos = end + 1;
}
ret[i] = strndup_quote(pos, quote, strlen(pos));
return ret;
}
void hb_str_vfree( char **strv )
{
int i;
if (strv == NULL)
return;
for ( i = 0; strv[i]; i++ )
{
free( strv[i] );
}
free( strv );
}
hb_chapter_queue_t * hb_chapter_queue_init(void)
{
hb_chapter_queue_t * q;
q = calloc(1, sizeof(*q));
if (q != NULL)
{
q->list_chapter = hb_list_init();
if (q->list_chapter == NULL)
{
free(q);
q = NULL;
}
}
return q;
}
void hb_chapter_queue_close(hb_chapter_queue_t **_q)
{
hb_chapter_queue_t * q = *_q;
hb_chapter_queue_item_t * item;
if (q == NULL)
{
return;
}
while ((item = hb_list_item(q->list_chapter, 0)) != NULL)
{
hb_list_rem(q->list_chapter, item);
free(item);
}
hb_list_close(&q->list_chapter);
free(q);
*_q = NULL;
}
void hb_chapter_enqueue(hb_chapter_queue_t *q, hb_buffer_t *buf)
{
/*
* Chapter markers are sometimes so close we can get a new
* one before the previous goes through the encoding queue.
*
* Dropping markers can cause weird side-effects downstream,
* including but not limited to missing chapters in the
* output, so we need to save it somehow.
*/
hb_chapter_queue_item_t *item = malloc(sizeof(hb_chapter_queue_item_t));
if (item != NULL)
{
item->start = buf->s.start;
item->new_chap = buf->s.new_chap;
// Make sure work_loop doesn't also copy the chapter mark
buf->s.new_chap = 0;
hb_list_add(q->list_chapter, item);
}
}
void hb_chapter_dequeue(hb_chapter_queue_t *q, hb_buffer_t *buf)
{
hb_chapter_queue_item_t *item = hb_list_item(q->list_chapter, 0);
if (item != NULL)
{
if (buf->s.start < item->start)
{
// Have not reached the next chapter yet.
return;
}
// we're done with this chapter
hb_list_rem(q->list_chapter, item);
buf->s.new_chap = item->new_chap;
free(item);
}
}